首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   

2.
We describe the results of a study of the mean lifetime of molecular clouds based on actual observations. Using the model of growth from cloud-cloud collision and observations of 13CO along the galactic equator between longitudes 27°.85 and 40°, we derive a lower limit of 1 × 109 yr for the lifetime of the interstellar molecular clouds  相似文献   

3.
Using the recent observational data on atomic and molecular hydrogen in the Galaxy, we analyse the dynamics of the interstellar gas in a spiral density wave. Within the framework of Marochniket al.'s (1972) model of the galactic spiral structure, the gas flow is obtained, with self-gravitation and thermal processes taken into account.It is shown that: (1) the self-gravitation of gas does not practically affect the galactic shock if the dominant contribution into the gas density comes from atomic hydrogen; (2) the effects of self-gravitation could be essential for both the gas flow and the stellar spiral wave only if the density contribution of H2 exceeded several times that ofHi, with molecular hydrogen as a continuous medium having the isothermal equation of state; (3) however, regardless of the estimates of H2 abundance in the Galaxy, its reaction to the density wave is weak, since it forms a collisionless system not dragged by the intercloud gas.It has been found that, if we allow for thermal processes in the interstellar medium, new types of gas flow can develop alongside with a previously-known continuous flow and galactic shock. They are: (1) galactic shock with the phase transition leading to the formation of dense cold clouds; (2) a three-phase flow where hot cavities and dense cold clouds coexist with an initial, moderately dense and cold phase; (3) an accretion wave which is a specific type of nonlinear wave with an amplitude of 11/2 orders of magnitude larger than that of the isothermal galactic shock appearing under the same conditions, but without heating and cooling.  相似文献   

4.
It is shown that the lists of Shakhbazian Compact Galaxy Groups (SCGGs) are not complete. The number of the detected groups in the strip between b = ±30° and b = ±20° is by four to five times smaller than expected. The most probable reason is that during the search for SCGGs it was hard to distinguish images of compact galaxies from that of stars on the POSS prints in dense areas of the sky at lower galactic latitudes. There is some deficit of the detected groups between 60° and 40° of the north galactic latitudes. The surface density of SCGGs in the southern galactic hemisphere between b = −50° and b = −30° is by about three times less than it is expected. Obviously, the southern sky has not been searched properly. The list of Hickson's groups is complete down to galactic latitude ±30°. However, some excess of HCGs is found in the southern hemisphere, where the surface density of the found groups is by about two times higher than that of in the northern hemisphere.  相似文献   

5.
ISOGAL is a survey at 7 and 15 μm with ISOCAM of the inner galactic disk and bulge of our Galaxy. The survey covers ∼ 22 deg2 in selected areas of the centrall = ±30 degree of the inner Galaxy. In this paper, we report the study of a small ISOGAL field in the inner galactic bulge (l = 0°,b = −1°, area = 0.033deg2). Using the multicolor nearinfrared data (IJKs) of DENIS (DEep Near Infrared Southern Sky Survey) and mid-infrared ISOGAL data, we discuss the nature of the ISOGAL sources. The various color-color and color-magnitude diagrams are discussed in the paper. While most of the detected sources are red giants (RGB tip stars), a few of them show an excess in J-Ks and Ks-[15] colors with respect to the red giant sequence. Most of them are probably AGB stars with large mass-loss rates.  相似文献   

6.
S.V.M. Clube  W.M. Napier 《Icarus》1985,62(3):384-388
The observed properties of the long-period comet system, and its periodic disturbance by galactic forces manifesting as terrestrial impact episodes, may be indicative of a comet capture/escape cycle as the Solar System orbits the Galaxy. A mean number density of comets in molecular clouds of ~10?1±1 AU?3 is implied. This is sufficient to deplete metals from the gaseous component of the interstellar medium, as observed, but leads to the problem of how stars are formed nevertheless with solar metal abundances. Formation of comets prior to stars in dense systems of near-zero energy may be indicated, and isotope signatures in cometary particles may be diagnostic of conditions in young spiral arm material.  相似文献   

7.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

8.
The orbits of over 10000 stars are integrated in a steady-state model of the Galaxy for a time 6.0×108 yr. Initially, the stars are placed randomly inside spheres of 500 pc and 50 pc radius and are given random velocities, such that the sample has a Maxwellian or a spheroidal velocity distribution. The spheres are placed at the Sun's distance from the galactic centre (10 kpc) and are given a circular velocity of 250 km s?1. The mean velocities and dispersions of stars within 1 kpc of an ‘observer’ moving at the circular velocity are calculated as functions of time. The quantities show a strong time-dependence with oscillations of period 108 yr. The oscillations are independent of the mass model and occur also in an inverse square force field. A vertex deviation of the velocity ellipsoid, an asymmetric drift and aK-effect occur as natural consequences of the oscillations. Attempts to apply the Oort method for density determinations in the galactic plane are also influenced by the oscillations. Spiral density waves appear to have a small effect on the motions of the test stars.  相似文献   

9.
In the maps of the galactic structure based on the kinematical method, several systematic heliocentric anomalies are found: in the northern galactic hemisphere the spiral arms are more tightly wound and the extent of neutral hydrogen is smaller than in the southern hemisphere; with separate rotation curves for the north and the south the arms become anomalously circular with a consequent discrepancy to the stellar distribution; there are straight portions in the arms pointing towards the Sun, as well as systematic strong curvatures and knee-like features; the inner arms affect the structure of the outer arms; with the northern rotation model, Hii-regions and Hi avoid the southern tangential circle; in the rear of the Galaxy, at symmetric longitudes, enhanced Hi-densities are found; the Perseus arm is displaced atl=180°. All of these anomalies can be explained with a simple model involving a non-velocity redshift field within the Galaxy, with an enhancement within the spiral arms. This is demonstrated by numerical simulations of the structural anomalies. Reducing the redshift effect from the kinematic data, the Galaxy's structure and kinematics appear symmetric. The significance of the result for the redshift problem is discussed.  相似文献   

10.
The spiral pattern of the Galaxy, identified by analyzing the kinematics of young stars within 3 kpc of the Sun, is Fourier decomposed into spiral harmonics. The spiral pattern of the Galaxy is shown to be representable as a superposition of trailing and leading waves with interarm distances of λ = 1.8 ± 0.4 and 4 ± 2 kpc, respectively. Shock waves are probably present only in the portions of the trailing spiral pattern where it crosses the crest of the leading wave. The small interarm distance of the trailing spiral wave (λ = 1.8 kpc) can be explained by its evolution—by the decrease in the interarmd istance as the wave is displaced toward the inner Lindblad resonance. The Carina arm may be part of this resonance ring.  相似文献   

11.
The accumulation and distribution of rare-light elements in the Galaxy is investigated according to a model of the galaxy at which center there exists a pulsating active nucleus with decreasing activity with time. The abundances of rare-light elements rapidly decrease with approaching to the galactic center whereas the most abundant region of these elements is the annular region of the radial distance ofr=8~14 kpc from the galactic center. In the inner region ofr?8 kpc the abundances of these elements have varied by two to three orders of magnitude from the early days of the galactic history till now, but inr?8 kpc they have been almost constant within a factor of 2. It has become clear that if the nuclides D,3He,7Li,10B and11B have been produced mainly by the shock process taking place in the outer envelope of type-II supernova, they must have been created by the mass fractions of the supernova of some 2.7×10?3, 1.7×10?4, 6.9×10?8, 1.7×10?7 and 7.9×10?7, respectively, to account for the solar system abundances.  相似文献   

12.
Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s?1. We have obtained the series of residual tangential, ΔV θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s?1 and f R = 7.8±0.7 km s?1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = ?5.2° ±0.7°. The phase of the Sun ζ in the spiral density wave is ?50° ± 15° and ?160° ± 15° from the residual tangential and radial velocities, respectively.  相似文献   

13.
It is assumed that the density of sites of technical civilizations emitting suitable signals (whether purposeful or unintentional) is proportional to the stellar density at any location in our Galaxy, as modeled by Bahcall and Soneira (1980, Astrophys. J. Suppl. Ser.44, 73–110). A wide variety of possible radio luminosity functionsφ(L)for these civilizations is then assumed and for each the number of detectable signals per square degree over the sky is calculated. It has been found that most detectable signals occur at galactic latitudes of 10° or less and longitudes within 90° of the galactic center, a region which covers only 9% of the entire sky. This result holds for a wide range ofφ(L) types, including Gaussian distributions and power law functions with slopes less than 2.5, or any combination of these. The Milky Way is much less preffered, but still advantageous, for cases of steep power law functions (slopes greater than 2.5) or Gaussian functions with mean luminosities so low that any existing civilizations can only be detected at small distances(<0.5 kpc). The only cases where low galactic latitudes are not advantageous are (1) for frequencies of operation less than 600 MHz where the deleterious effects on signal-to-noise ratios of the natural galactic background emission become dominant, and (2) in searches for narrowband(<1 Hz) signals at frequencies less than 2 GHz where significant interstellar broadening of signals occurs over distances of? 10 kpc. Furthermore, all of the above results have broader applicability: they are equally valid for searches for any type of natural radio phenomenon if its probability of occurence is proportional to stellar density. Therefore, for a nontargeted search, a Milky Way strategy which concentrates on the inner galactic plane is preferred. The factor of 10 in time saved over an all-sky survey can then be used for, say, increased sensitivity or a survey of nearby galaxies. For a targeted search, rather than searching the nearestn solar-like stars, time is more profitably spent, for example, on the very nearest0.1n stars plus the next nearest0.9n stars which are also within 10° of the galactic plane. This picks up the Milky Way background while only sacrificing a factor of 2 in the average distance to the target stars.  相似文献   

14.
The stability of galactic spiral shocks is considered. A steady-state shock should be checked to see (i) if it is evolutionary; (ii) if its front is stable against bending and torsion; and (iii) if the gas flow far from the front is stable. In the present paper the evolutionary criterion is obtained, which implies that conditions in galaxies may lead to the evolutionary spiral shocks as well as to the nonevolutionary ones. In the latter case a galactic shock cannot persist — it instantly decays, emitting spontaneously spiral waves. This leads to a plausible stratification of the spiral arms, to the formation of the secondary arms, ‘spurs’ and other secondary features. The steady-state gas flow with a galactic shock (Roberts, 1969) turns out to be unstable far from the shock front, the increment being proportional to the velocity gradient. For the spiral shock calculated by Roberts (1969) the instability develops ahead of the shock front with the same growth-time of about 3×107 years for all disturbance scales. This may provide a mechanism to generate turbulence of interstellar gas and to form the patchy structure of spiral arms which are known to include the structural units (gas clouds) on all possible scales.  相似文献   

15.
The two basic components of the neutral hydrogen, cool dense clouds merged in a hotter tenuous medium, are studied using 21 cm absorption data of the Parkes Survey. The mean parameters obtained for the typical clouds next to the galactic plane are τp = 1.7, velocity half-width=3.3 km s?1. Their temperatures areT sc ≥40 K with a meanT sc =63±12 K and the obtained hot gas density isn HH=(0.15±0.05) atom cm?3. Theoretical analysis following Giovanelli and Brown (1973) reveals that the pressure equilibrium condition (n HH+2n e T SHn HC·T sc is compatible with the quoted values if it is assumed that the cosmic abundances in the interstellar medium are below the adopted normal solar abundance. This lack of heavy elements suggests accretion to grains which is consistent with the observed narrow concentration of the dark matter on the galactic layer (≤100 pc halfwidth). The same pressure condition leads to a mean cool cloud density ofn HC~30 atom cm?3 and a hot gas temperature ofT SH~10 500 K. Comparison with data from Hii regions suggests that the cool clouds are somewhat denser and less extensive than such regions. An explanation for it is the expansion that the Hii regions went through in their origin. Comparison with 21 cm emission data shows that the cloud galactic layer is only about a quarter as thick as the hot gas layer. All the present results suggest that only such clouds can be spatially related with the typical I population associated with the spiral structure.  相似文献   

16.
An extensive concentration of neutral hydrogen has been observed in the fourth galactic quadrant, with a mean radial velocity of +44 km s?1 referred to the local standard of rest. At a distance ofR kpc from the Sun this structure would contain 2.5×104 R 2 solar masses of neutral hydrogen. Five possible interpretations of this extensive concentration are considered: (1) part of the shell of a nearby explosive event; (2) a distant spiral arm of the Galaxy; (3) an extragalactic object; (4) material falling into our Galaxy; (5) gas expelled from the galactic center. Arguments are offered against the first three possibilities.  相似文献   

17.
Star formation     
Various topics on star formation, centered on the observed properties of young stars and their environment, are reviewed. (a) In our Galaxy, young stellar objects are generally associated with giant molecular clouds. (b) Giant molecular clouds cannot be in free-fall collapse. They are probably stabilized by magnetic fields, which are then likely to dominate the dynamical evolution of the clouds themselves. (c) Star formation occurs mostly in spiral arms. The role of spiral density waves is however not yet clearly understood. (d) The formation of massive stars can perturb the evolution of the progenitor cloud, and possibly trigger the sequential formation of OB subgroups. (e) There is a large number of clouds in the Galaxy associated only with low and intermediate mass young stars. These clouds are not perturbed by the presence of massive stars, and are probably the best source of information on the primary triggering mechanism, active on a galactic scale, and on the initial conditions for star formation.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

18.
Immediate consequences of nuclear explosions on the structure and physical state of a galactic disk are considered in this paper. Explosions in the nucleus of a Galaxy generate strong shock waves which, when propagating onward heat and condensing the gas, form thin dense ring-like gaseous features behind it. Such rings and dense gaseous complexes have been observed in the central region of the Galaxy. These features have been treated here as the remnants of galactic shocks generated by nuclear explosions. We have estimated the time elapsed since the corresponding explosion, the energy released by explosion and the initial temperature and the velocity of the shock wave thus generated. The cooling of the gas heated by strong shocks has also been considered. The time taken by shock-heated gas to cool to its original temperature has been estimated to be of the order of 105 to 106 yr, according to the initial shock temperature which is about 9×106 K or 6.4×107 K. The rate of emission of energy and the total amount of energy dissipated away in the form of radiation in the cooling process, have been calculated for different values of initial shocktemperatures and also for different field intensities. The high-energy radiation emitted in the cooling process is suggested here as a source for the heating of dust grains, which ultimately are radiated in the infrared spectrum. Thus, a part of the infrared radiation, as measured by many authors, in the central region of the Galaxy, may originate ultimately from the cooling of the shock-heated gas there.  相似文献   

19.
The origin and behavior of cosmic rays in the Galaxy depends crucially upon whether the galactic magnetic field has a closed topology, as does the field of Earth, or whether a major fraction of the lines of force connect into extragalactic space. If the latter, then cosmic rays could be of extragalactic origin, or they could be of galactic origin, detained in the Galaxy by the scattering offered by hydromagnetic waves, etc. If, on the other hand, the field is largely closed, then cosmic rays cannot be of extragalactic origin (at least below 1016 eV). They must be of galactic origin and escape because their collective pressure inflates the galactic field and they push their way out.This paper examines the structure of a galactic field that opens initially into intergalactic space and, with the inclusion of turbulent diffusion, finds no possibility for maintaining a significant magnetic connection with an extragalactic field. Unless some mechanism can be found, we are forced to the conclusion that the field is closed, that cosmic rays are of galactic origin, and that cosmic rays escape from the Galaxy only by pushing their way out.  相似文献   

20.
On the basis of the PLC relation (1) or the PL relation by Van den Bergh (2) and the PC relation by Deanet al. (1978), the distances of 284 galactic cepheids with photoelectric observations have been derived. The space distribution of these cepheids with 111 additional ones without photoelectric observations, is studied. In spite of the strong influence of the absorption matter, which makes a great number of distant cepheids unknown (Figure 4), a conclusion is drawn that the cepheids do not trace spiral arms with only one possible exception: the Carina arm. The cepheidz-coordinate distribution confirms the finding of Fernie (1968) that the cepheid layer is inclined towards the formal galactic plane. On the basis of cepheid space density, a number of vast star complexes (Table I) are identified in which other young objects, together with cepheids fall. The existence of these complexes is explained by star formation in giant molecular clouds. The cepheid mean period increase towards the galactic centre is most probably connected with the existence of a ring between the Sun and the centre of the Galaxy, with the highest density of hydrogen and the highest rate of star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号