首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report some of the results of the search for narrow-band spatial and spectral fluctuations of cosmic microwave background at the wavelength of 6.2 cmperformed with the RATAN-600 radio telescope in 2001–2006 in two 35′ × 7′ strips on the sky in the vicinity of the North Celestial Pole. We find the spectra of spatial fluctuations in the 12 MHz radio-frequency band and in the interval of spatial periods from 4′ to 16′ to exhibit power-law rises with exponents reaching ?2.0±0.5, with a periodicity of 2–3 MHz. We also find two narrow-band (in terms of angular frequency) features at 4870.4 and 4871.5 MHz with the corresponding fluctuation amplitudes of 5±0.5 mK in terms of antenna temperature in the vicinity of angular periods of about 5′ with the frequency bandwidths of about 600 kHz. Standard tests performed using the spectra of the half-sum and half-difference of two groups of observations randomly drawn from a total sample of 23 records of the March 2002 observing set confirm the reality of the features of the angular spectrumof fluctuations mentioned above and so does the comparison with the spectra of cold matched load connected to the receiver input instead of the antenna. However, the nature of the features found remains unclear. Our attempt to link this radiation to rotational transitions 2Π1/2, J = 5/2 of the CH molecule, which has one of the components of its multiplet located inside the frequency interval of interest considered failed.  相似文献   

2.
This paper describes a wide-field survey made at 34.5 MHz using GEETEE,1 the low frequency telescope at Gauribidanur (latitude 13°36′12′′N). This telescope was used in the transit mode and by per forming 1-D synthesis along the north-south direction the entire observable sky was mapped in a single day. This minimized the problems that hinder wide-field low-frequency mapping. This survey covers the declination range of-50° to + 70° (- 33° to +61° without aliasing) and the complete 24 hours of right ascension. The synthesized beam has a resolution of 26′ x 42′ sec (δ- 14°. 1). The sensitivity of the survey is 5 Jy/beam (1σ). Special care has been taken to ensure that the antenna responds to all angular scale structures and is suitable for studies of both point sources and extended objects This telescope is jointly operated by the Indian Institute of Astrophysics, Bangalore and the Roman Research Institute, Bangalore.  相似文献   

3.
We present the results of a search for carbon recombination lines in the Galaxy at 34.5 MHz (C575α) made using the dipole array at Gauribidanur near Bangalore. Observations made towards 32 directions resulted in detections of lines, in absorption at nine positions. Followup observations at 328 MHz (C272α) using the Ooty Radio Telescope detected these lines in emission. A VLA D-array observation of one of the positions at 330 MHz yielded no detection implying a lower limit of 10′ for the angular size of the line forming region. The longitude-velocity distribution of the observed carbon lines indicate that the line forming regions are located mainly between 4 kpc and 7 kpc from the Galactic centre. Combining our results with published carbon recombination line data near 76 MHz (Erickson, McConnell & Anantharamaiah 1995), we obtain constraintson the physical parameters of the line forming regions. We find thatif the angular size of the line forming regions is ≥ 4°, then the range of parameters that fit the data are:T e =20–40 K,n e ∼ 0.1–0.3 cm−3 and pathlengths ∼ 0.07–0.9 pc which may correspond to thin photodissociated regions around molecular clouds. On the other hand, if the line forming regions are ∼ 2° in extent, then warmer gas (T e ∼ 60–300 K) with lower electron densities (n e ∼ 0.03–0.05 cm−3) extending over several tens of parsecs along the line of sight and possibly associated with atomic HI gas can fit the data. Based on the range of derived parameters, we suggest that the carbon line regions are most likely associated with photo-dissociation regions.  相似文献   

4.
We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| > 15°) Galactic latitudes. The Declination coverage of the present survey is δ}> - 45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.  相似文献   

5.
We present the first tests of a new method, the correlated component analysis (CCA) based on second-order statistics, to estimate the mixing matrix, a key ingredient to separate astrophysical foregrounds superimposed to the Cosmic Microwave Background (CMB). In the present application, the mixing matrix is parametrized in terms of the spectral indices of Galactic synchrotron and thermal dust emissions, while the free–free spectral index is prescribed by basic physics, and is thus assumed to be known. We consider simulated observations of the microwave sky with angular resolution and white stationary noise at the nominal levels for the Planck satellite, and realistic foreground emissions, with a position-dependent synchrotron spectral index. We work with two sets of Planck frequency channels: the low-frequency set, from 30 to 143 GHz, complemented with the Haslam 408 MHz map, and the high-frequency set, from 217 to 545 GHz. The concentration of intense free–free emission on the Galactic plane introduces a steep dependence of the spectral index of the global Galactic emission with Galactic latitude, close to the Galactic equator. This feature makes difficult for the CCA to recover the synchrotron spectral index in this region, given the limited angular resolution of Planck , especially at low frequencies. A cut of a narrow strip around the Galactic equator  (| b | < 3°)  , however, allows us to overcome this problem. We show that, once this strip is removed, the CCA allows an effective foreground subtraction, with residual uncertainties inducing a minor contribution to errors on the recovered CMB power spectrum.  相似文献   

6.
In a previous paper we presented a low-resolution (2°×2°) survey of radio recombination lines (RRLs) at 327 MHz in the longitude rangel=330° to 0° to 89°. In this paper, we present the results of a higher resolution (2°×6′) survey of RRLs from seven 2°-wide fields and two 6°-wide fields in the same longitude range. Observations were made using the Ooty Radio Telescope (ORT). A total of 252 spectra that were obtained are presented. RRLs were detected in almost all the individual positions within the fields withl<35° and at several individual positions within the fields in the longitude rangel=35° to 85°. Detailed analysis of the data towards the field centered at G45.5+0.0, shows that the line emission consists of discrete zones of ionized gas. The angular extent of these zones are likely to be one degree or more corresponding to a linear size of >110 pc at the kinematic distance.  相似文献   

7.
We have investigated the stellar population of the Chandra Bulge Field (CBF) 35′ × 35′ in area using the Russian-Turkish RTT-150 telescope with the goal of constructing an interstellar extinction map and determining the extinction law. The optical extinction has been determined from the positions of red clump giants (a group of red giants with the same luminosity and color) on the color-magnitude diagram in different parts of the field. This has allowed an interstellar extinction map of the field under consideration to be constructed with a resolution of 1′ × 1′. Based on the results of our analysis, we have also shown that the extinction law in the investigated field differs significantly from the standard one, most likely because the dust properties in the Galactic bulge differ from those in the Galactic disk. The derived extinction law confirms the measurements in the outer parts of the Galactic bulge.  相似文献   

8.
In a novel approach in observational high-energy gamma-ray astronomy, observations carried out by imaging atmospheric Cherenkov telescopes provide necessary templates to pinpoint the nature of intriguing, yet unidentified EGRET gamma-ray sources. Using GeV-photons detected by EGRET and taking advantage of high spatial resolution images from H.E.S.S. observations, we were able to shed new light on the EGRET observed gamma-ray emission in the Kookaburra complex, whose previous coverage in the literature is somewhat contradictory. 3EG J1420–6038 very likely accounts for two GeV gamma-ray sources (E>1 GeV), both in positional coincidence with the recently reported pulsar wind nebulae (PWN) by HESS in the Kookaburra/Rabbit complex. PWN associations at VHE energies, supported by accumulating evidence from observations in the radio and X-ray band, are indicative for the PSR/plerionic origin of spatially coincident, but still unidentified Galactic gamma-ray sources from EGRET. This not only supports the already suggested connection between variable, but unidentified low-latitude gamma-ray sources with pulsar wind nebulae (3EG J1420–6038 has been suggested as PWN candidate previously), it also documents the ability of resolving apparently confused EGRET sources by connecting the GeV emission as measured from a large-aperture space-based gamma-ray instrument with narrow field-of-view but superior spatial resolution observations by ground-based atmospheric Cherenkov telescopes, a very promising identification technique for achieving convincing individual source identifications in the era of GLAST-LAT.   相似文献   

9.
Fine structure observations of the frequency spectrum of the S-component in the solar radio emission are described. Measurements were carried out in August 1976 and August 1977 using a 22 m parabolic antenna and a radiospectrograph operating over the frequency range 5.0 to 7.0 GHz, with the resolution 60 MHz. Measurement techniques are described. Fine structures (150–800 MHz) as great as 20% of the local source radiation level were observed in radio emission spectra of a number of these sources. The spectrum structures observed were changed in the process of active region development.  相似文献   

10.
We present the estimates of Galactic synchrotron and free-free emission power at intermediate and small scales (500 < l < 1000, 20′ < θ < 40′), based on the RATAN-600 radio telescope observations (SAO RAS). The observations were conducted in the frequency range of 2.3–11.2 GHz using the transit scan mode, in the declination range of 40.7° s δ < 42.3°. The power spectrum estimates of synchrotron and free-free components were obtained. They can be further used in the data processing stage of the high-resolution cosmological experiments like Planck.  相似文献   

11.
We present an analysis of the thin layer of Galactic warm ionized gas at an angular resolution ∼10 arcmin. This is carried out using radio continuum data at 1.4, 2.7 and 5 GHz in the coordinate region     . For this purpose, we evaluate the zero level of the 2.7- and 5-GHz surveys using auxiliary data at 2.3 GHz and 408 MHz. The derived zero-level corrections are   T zero(2.7 GHz) = 0.15 ± 0.06 K  and   T zero(5 GHz) = 0.1 ± 0.05 K  . We separate the thermal (free–free) and non-thermal (synchrotron) component by means of a spectral analysis performed adopting an antenna temperature spectral index −2.1 for the free–free emission, a realistic spatial distribution of indices for the synchrotron radiation and by fitting, pixel-by-pixel, the Galactic spectral index. We find that at 5 GHz, for  | b | = 0°  , the fraction of thermal emission reaches a maximum value of 82 per cent, while at 1.4 GHz, the corresponding value is 68 per cent. In addition, for the thermal emission, the analysis indicates a dominant contribution of the diffuse component relative to the source component associated with discrete H  ii regions.  相似文献   

12.
It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our model is compatible with the angular spectra of star-light polarization for the Galactic disk. Finally, we discuss how one can estimate polarized microwave emission from dust in the Galactic halo using star-light polarimetry.  相似文献   

13.
We performed high resolution spectroscopy of the solar corona during the total solar eclipse of 22 July 2009 in two emission lines: the green line at 5303 ? due to Fe xiv and the red line at 6374 ? due to Fe x, simultaneously from Anji (latitude 30°28.1′ N; longitude 119°35.4′ E; elevation 890 m), China. A two-mirror coelostat with 100 cm focal length lens produced a 9.2 mm image of the Sun. The spectrograph using 140 cm focal length lens in Littrow mode and a grating with 600 lines per millimeter blazed at 2 μm provided a dispersion of 30 m? and 43 m? per pixel in the fourth order around the green line and third order around the red line, respectively. Two Peltier cooled 1k × 1k CCD cameras, with a pixel size of 13 μm square and 14-bit readout at 10 MHz operated in frame transfer mode, were used to obtain the time sequence spectra in two emission lines simultaneously. The duration of totality was 341 s, but we could get spectra for 270 s after a trial exposure at an interval of 5 s. We report here on the detection of intensity, velocity, and line width oscillations with periodicity in the range of 25 – 50 s. These oscillations can be interpreted in terms of the presence of fast magnetoacoustic waves or torsional Alfvén waves. The intensity ratios of green to red emission lines indicate the temperature of the corona to be 1.65 MK in the equatorial region and 1.40 MK in the polar region, relatively higher than the expected temperature during the low activity period. The width variation of the emission lines in different coronal structures suggests different physical conditions in different structures.  相似文献   

14.
W51 is a giant radio complex lying along the tangent to the Sagitarius arm at a distance of about 7 kpc from the Sun, with an extension of about 1° in the sky. It is divided into three components A, B, C where W51A and W51B consist of many compact HII regions while W51C is a supernova remnant. We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20″ × 15″) at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission spectrum and their physical properties like electron temperatures and emission measures have been estimated. The electron temperatures from continuum spectra are found to be lower than the temperatures reported from radio recombination line (RRL) studies of these HII regions indicating the need for a filling factor even at this resolution. Also, the observed brightness at 240 MHz is found to be higher than expected from the best fits suggesting the need for a multicomponent model for the region.  相似文献   

15.
Observations of the H166 α recombination line were made with the 43 m antenna of the National Radio Astronomy Observatory (NRAO), in Green Bank, West Virginia, United States of America. The United States of results of the observations in the galactic longitude range 60−<l<90<− at each degree in galactic longitude and galactic latitudes b=0.0, b=+0.5−, b=+1.5−,b=−0.5− ,b=−1.5−, together with observations at l=81− and l=83− for b=−4− to b=+5−, each degree in galactic latitude, clearly show more recombination line emission for positive galactic latitudes than for negative galactic latitudes. We interpret these results as a clear evidence of the warp of the low density ionized gas layer towards positive latitudes in the Northern Galactic Plane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The GEM (Galactic Emission Mapping) project is an international collaboration established with the aim of surveying the full sky at long wavelengths with a multi-frequency radio telescope. A total of 745 hours of observation at 408 MHz were completed from an Equatorial site in Colombia. The observations cover the celestial band 0 h <<24 h , and –24° 22<<+35° 37. Preliminary results of this partial survey will be discussed. A review of the instrumental setup and a 10° resolution sky map at 408 MHz is presented.Presented by S. Torres at the UN/ESA Workshop on Basic Space Sciences: From Small Telescopes to Space Missions, Colombo, Sri Lanka 11–14 January 1996  相似文献   

17.
Krucker  Säm  Christe  Steven  Lin  R.P.  Hurford  Gordon J.  Schwartz  Richard A. 《Solar physics》2002,210(1-2):445-456
The excellent sensitivity, spectral and spatial resolution, and energy coverage down to 3 keV provided by the Reuven Ramaty High-Energy Solar Spectroscopic Imager mission (RHESSI) allows for the first time the detailed study of the locations and the spectra of solar microflares down to 3 keV. During a one-hour quiet interval (GOES soft X-ray level around B6) on 2 May, 1:40–2:40 UT, at least 7 microflares occurred with the largest peaking at A6 GOES level. The microflares are found to come from 4 different active regions including one behind the west limb. At 7′′ resolution, some events show elongated sources, while others are unresolved point sources. In the impulsive phase of the microflares, the spectra can generally be fitted better with a thermal model plus power law above ∼ 6–7 keV than with a thermal only. The decay phase sometimes can be fitted with a thermal only, but in some events, power-law emission is detected late in the event indicating particle acceleration after the thermal peak of the event. The behind-the-limb microflare shows thermal emissions only, suggesting that the non-thermal power law emission originates lower, in footpoints that are occulted. The power-law fits extend to below 7 keV with exponents between −5 and −8, and imply a total non-thermal electron energy content between 1026–1027 erg. Except for the fact that the power-law indices are steeper than what is generally found in regular flares, the investigated microflares show characteristics similar to large flares. Since the total energy in non-thermal electrons is very sensitive to the value of the power law and the energy cutoff, these observations will give us better estimates of the total energy input into the corona. (Note that color versions of figures are on the accompanying CD-ROM.) Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022404512780  相似文献   

18.
We report very high temporal and spectral resolution interferometric observations of some unusual solar radio bursts near 1420 MHz. These bursts were observed on 13 September 2005, 22 minutes after the peak of a GOES class X flare from the NOAA region 10808. Our observations show 11 episodes of narrow-band intermittent emission within a span of ≈ 8 s. Each episode shows a heavily frequency-modulated band of emission with a spectral slope of about −245.5 MHz s−1, comprising up to 8 individual blobs of emission and lasts for 10 – 15 ms. The blobs themselves have a spectral slope of ≈ 0 MHz s−1, are ≈ 200 – 250 kHz wide, appear every ≈ 400 kHz and last for ≈ 4 – 5 ms. These bursts show brightness temperatures in the range 1012 K, which suggests a coherent emission mechanism. We believe these are the first high temporal and spectral resolution interferometric observations of such rapid and narrow-bandwidth solar bursts close to 1420 MHz and present an analysis of their temporal and spectral characteristics.  相似文献   

19.
We present narrow band AAO/UKST Hα images and medium and low resolution optical spectra of a nebula shell putatively associated with the Wolf-Rayet star WR 60. We also present the first identification of this shell in the radio regime at 843 MHz and at 4850 MHz from the Sydney University Molonglo Sky Survey (SUMSS), and from the Parkes-MIT-NRAO (PMN) survey respectively. This radio emission closely follows the optical emission. The optical spectra from the shell exhibits the typical shock excitation signatures sometimes seen in Wolf-Rayet stellar ejecta but also common to supernova remnants. A key finding however, is that the WR 60 star, is not, in fact, anywhere near the geometrical centre of the putative arcuate nebula ejecta as had been previously stated. This was due to an erroneous positional identification for the star in the literature which we now correct. This new identification calls into serious question any association of the nebula with WR 60 as such nebula are usually quite well centred on the WR stars themselves. We now propose that this fact combined with our new optical spectra, deeper Hα imaging and newly identified radio structures actually imply that the WR 60 nebula should be reclassified as an unassociated new supernova remnant which we designate G310.5+0.8.  相似文献   

20.
The combination of a time-dependent spherically symmetric hydrodynamic model of stellar atmosphere pulsation and a radiation transport code, which incorporates maser saturation theory, enabled us to synthesise maps and spectra of H2O maser emission from the circumstellar envelopes of long period variable stars. The synthetic maps and spectra compare favourably with observed 22, 321 and 325 GHz H2O maser emission. As is observed in H2O maser regions the peak emission occurs between 3–8 stellar radii from the star. The calculated H2O maser regions are in conditions of nH2 = 106 − 108 cm−3, assuming a fractional abundance of 10−4; kinetic temperatures of 550–3000 K; dust ensemble temperatures of 500–1200 K and an accelerating velocity field. The IR radiation field is explicitly included in the radiation transport model, incorporating the latest absorption efficiency data for silicates from Draine. We reproduce the features seen in high angular resolution MERLIN spectral line datacubes. This shows that a mass outflow model which extends the photosphere using pulsations and incorporates radiation pressure on silicate based dust particles can produce the observed data on small (10-mas) angular scales. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号