首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
喜马拉雅造山带东端的南迦巴瓦岩群是高喜马拉雅结晶岩系的一部分,主要由麻粒岩相和角闪岩相变质的片麻岩、斜长角闪岩、片岩和钙硅酸盐岩组成.长英质片麻岩主要由斜长石、钾长石、石英、石榴石、黑云母和褐帘石组成.片麻岩中的锆石具有核一边结构,由一个大的继承岩浆核和一个窄的变质生长边组成.锆石岩浆核具同心韵律环带.其REE配分模式以HREE富集和负Eu异常为特征,并具有高的Th/U比值.锆石U-Pb年代分析表明,这种继承岩浆锆石给出的加权平均年龄为490~500Ma.地球化学特征表明,这些片麻岩的原岩是花岗岩和花岗闪长岩,形成在俯冲带的岩浆弧构造环境.钙硅酸盐岩中的锆石具有高级变质岩中变质生长锆石的典型特征,即具有相对较低的REE含量,不明显的负Eu异常和较低的Th/U比值.变质锆石所获得的U-Pb加权平均年龄为505Ma.本文和现有的研究结果表明,喜马拉雅造山带是一个复合造山带,它经历了古生代的原始造山作用,在新生代印度与欧亚板块的碰撞过程中发生了再造山作用.喜马拉的古生代造山带作用是原特提斯洋向冈瓦纳大陆北缘俯冲和亚洲微陆块(包括拉萨和羌塘地块)增生的结果,是在冈瓦纳大陆拼合之后其边缘发生的安底斯型造山作用,因此,它并不属于在冈瓦纳超大陆聚合过程中陆-陆碰撞形成的泛非造山带.  相似文献   

2.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

3.
《Precambrian Research》2001,105(2-4):143-164
New fieldwork, map interpretation, petrography and single zircon U–Pb geochronology has allowed the identification of different crustal blocks in the Paamiut region, in the southern portion of the West Greenland Archaean Craton. Changes of metamorphic grade from only amphibolite facies to granulite facies (some subsequently retrogressed) corresponds with zones of Archaean high strain ductile deformation ± mylonites. U–Pb zircon dates are presented for the TTG (tonalite, trondhjemite, granodiorite) protoliths from each block in the Paamiut region, and the southern portion of the previously identified Tasiusarsuaq terrane lying to the north. The southern part of the Tasiusarsuaq terrane contains 2880–2860 Ma TTG rocks and underwent amphibolite facies metamorphism. Structurally underneath the Tasiusarsuaq terrane to the south is the Sioraq block containing 2870–2830 Ma TTG rocks partly retrogressed from granulite facies. Structurally underneath and to the south is the Paamiut block, dominated by 2850–2770 Ma granodioritic rocks that have only undergone amphibolite facies metamorphism. Also structurally overlying the Paamiut block, but cropping out separately from the Sioraq block, is the Neria block. This appears to be dominated by 2940–2920 Ma gneisses that have been totally retrogressed from granulite facies and strongly deformed. In the southernmost part of the region the Neria block overlies the greenschist to lowermost amphibolite facies Sermiligaarsuk block that contains the ⩾2945 Ma Tartoq Group. Rocks from all the blocks record ancient loss of Pb from zircons and some new zircon growth at 2820 Ma, interpreted to indicate a high grade metamorphic event at that time, including granulite facies metamorphism in the Sioraq and Neria blocks. The blocks of different metamorphic grade are interpreted to have moved to their current positions after the 2820 Ma metamorphism, explaining the change in metamorphic history across some mylonites and ductile shear zones which deform and retrogress granulite facies textures. The juxtaposed blocks and their contacts were subsequently folded under amphibolite facies conditions. The contacts are cut by undeformed Palaeoproterozoic dolerite dykes which post-date amphibolite facies metamorphism. These results, together with previously published data from the Godthåbsfjord region (north of Paamiut) shows that the North Atlantic Craton in West Greenland from Ivittuut in the south to Maniitsoq in the north (∼550 km) consists of a mosaic of ductile fault-bounded packages that attained their present relative positions in the late Archaean.  相似文献   

4.
Granulite facies gabbroic and dioritic gneisses in the Pembroke Valley, Milford Sound, New Zealand, are cut by vertical and planar garnet reaction zones in rectilinear patterns. In gabbroic gneiss, narrow dykes of anorthositic leucosome are surrounded by fine‐grained garnet granulite that replaced the host two‐pyroxene hornblende granulite at conditions of 750 °C and 14 kbar. Major and trace element whole‐rock geochemical data indicate that recrystallization was mostly isochemical. The anorthositic veins cut contacts between gabbroic gneiss and dioritic gneiss, but change in morphology at the contacts, from the anorthositic vein surrounded by a garnet granulite reaction zone in the gabbroic gneiss, to zones with a septum of coarse‐grained garnet surrounded by anorthositic leucosome in the dioritic gneiss. The dioritic gneiss also contains isolated garnet grains enclosed by leucosome, and short planar trains of garnet grains linked by leucosome. Partial melting of the dioritic gneiss, mostly controlled by hornblende breakdown at water‐undersaturated conditions, is inferred to have generated the leucosomes. The form of the leucosomes is consistent with melt segregation and transport aided by fracture propagation; limited retrogression suggests considerable melt escape. Dyking and melt escape from the dioritic gneiss are inferred to have propagated fractures into the gabbroic gneiss. The migrating melt scavenged water from the surrounding gabbroic gneiss and induced the limited replacement by garnet granulite.  相似文献   

5.
Three types of zircon occur in a complexly deformed and variably migmatized quartzofeldspathic gneiss from the Reynolds Range, central Australia. The oldest type is inherited from the granitic precursor of the gneiss, and is overgrown by a second group of zircon grains that formed during prograde, granulite facies metamorphism. Partial melting of the gneiss resulted in solution of both the inherited and metamorphic zircon. No new zircon growth accompanied crystallization of the partial melt, suggesting loss of zirconium–rich residual fluids. Hydrous, amphibolite facies retrogression of the gneiss and its migmatized variants during late shearing produced new, idiomorphic zircon in both the shear zone and its wall rocks.
Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones.  相似文献   

6.
柴北缘都兰高压麻粒岩的锆石U-Pb定年及其地质意义   总被引:3,自引:0,他引:3  
在柴北缘高压-超高压变质带的东端都兰地区,高压麻粒岩以透镜体的形式存在于石榴白云母片岩、花岗质片麻岩以及斜长角闪岩中。高压麻粒岩的主体为基性麻粒岩,并含少量中酸性麻粒岩。基性麻粒岩主要由石榴子石、单斜辉石、斜长石和石英等组成,而中酸性麻粒岩峰期矿物组合为:石榴子石+斜长石+钾长石+蓝晶石+石英±单斜辉石。根据显微构造和反应结构特征,主要识别出3期变质作用:①峰期高压麻粒岩相阶段(M1);②退变质高角闪岩相阶段(M2);③绿片岩相/低角闪岩相阶段(M3)。选取典型的中酸性麻粒岩样品进行了锆石LA-ICP-MSU-Pb原位定年分析,获得加权平均年龄为446.9±6.5Ma,且CL图像显示锆石内部发育石榴子石、单斜辉石、斜长石等矿物包体,反映锆石可能形成在峰期高压麻粒岩相变质条件下。岩石学和年代学结果显示都兰高压麻粒岩和邻近的榴辉岩同时形成于同一俯冲带的不同热构造环境,高压麻粒岩并非榴辉岩热松弛作用形成的,两者具有各自独立的变质演化历史。  相似文献   

7.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

8.
《Precambrian Research》2001,105(2-4):115-128
The Aasivik terrane is a ∼1500 km2 complex of gneisses dominated by ∼3600 Ma components, which has been discovered in the Archaean craton of West Greenland, ∼20–50 km south of the Paleoproterozoic Nagssugtoqidian orogen. The Aasivik terrain comprises granulite facies tonalitic to granitic gneisses with bands of mafic granulite, which include disrupted mafic dykes. Four gneiss samples of the Aasivik terrain have given imprecise SHRIMP U–Pb zircon ages of 3550–3780 Ma with strong loss of radiogenic lead and new growth of zircon probably associated with a granulite facies metamorphic event(s) at ∼2800–2700 Ma. To the Southeast, the Aasivik terrane is in tectonic contact with a late Archaean complex of granitic and metapelitic gneisses with apparently randomly distributed mafic and ultramafic units, here named the Ukaleq gneiss complex. Two granitic samples from the Ukaleq gneiss complex have U–Pb zircon ages of 2817 ± 10 and 2820 ± 12 Ma and tzircon εNd values of 2.3–5.4. Given their composition and positive εNd values, they probably represent melts of only slightly older juvenile crust. A reconnaissance SHRIMP U–Pb study of a sample of metasedimentary rock from the Ukaleq gneiss complex found ∼2750–2900 Ma zircons of probable detrital origin and that two or more generations of 2700–2500 Ma metamorphic zircons are present. This gneiss complex is provisionally interpreted as a late Archaean accretionary wedge. A sample of banded granulite facies gneiss from a complex of banded gneisses south of the Aasivik terrain here named the Tasersiaq gneiss complex has yielded two zircon populations of 3212 ± 11 and 3127 ± 12 Ma. Contacts between the three gneiss complexes are mylonites which are locally cut by late-post-kinematic granite veins with SHRIMP U–Pb zircon ages of ∼2700 Ma. The isotopic character and the relationships between the lithologies from the different gneiss complexes suggest the assembly of unrelated rocks along shear zones between 2800 and 2700 Ma. The collage of Archaean gneiss complexes were intruded by A-type granites, here named the Umiatsiaasat granites, at ∼2700 Ma, later than the tectonic intercalation of the gneiss complexes.  相似文献   

9.
The central part of the Carolina terrane in western South Carolina comprises a 30 to 40 km wide zone of high grade gneisses that are distinct from greenschist facies metavolcanic rocks of the Carolina slate belt (to the SE) and amphibolite facies metavolcanic and metaplutonic rocks of the Charlotte belt (to the NW). This region, termed the Silverstreet domain, is characterized by penetratively deformed felsic gneisses, granitic gneisses, and amphibolites. Mineral assemblages and textures suggest that these rocks formed under high‐pressure metamorphic conditions, ranging from eclogite facies through high‐P granulite to upper amphibolite facies. Mafic rocks occur as amphibolite dykes, as metre‐scale blocks of coarse‐grained garnet‐clinopyroxene amphibolite in felsic gneiss, and as residual boulders in deeply weathered felsic gneiss. Inferred omphacite has been replaced by a vermicular symplectite of sodic plagioclase in diopside, consistent with decompression at moderate to high temperatures and a change from eclogite to granulite facies conditions. All samples have been partially or wholly retrograded to amphibolite assemblages. We infer the following P‐T‐t history: (1) eclogite facies P‐T conditions at ≥ 1.4 GPa, 650–730 °C (2) high‐P granulite facies P‐T conditions at 1.2–1.5 GPa, 700–800 °C (3) retrograde amphibolite facies P‐T conditions at 0.9–1.2 GPa and 720–660 °C. This metamorphic evolution must predate intrusion of the 415 Ma Newberry granite and must postdate formation of the Charlotte belt and Slate belt arcs (620 to 550 Ma). Comparison with other medium temperature eclogites and high pressure granulites suggests that these assemblages are most likely to form during collisional orogenesis. Eclogite and high‐P granulite facies metamorphism in the Silverstreet domain may coincide with a ≈570–535 Ma event documented in the western Charlotte belt or to a late Ordovician‐early Silurian event. The occurrence of these high‐P assemblages within the Carolina terrane implies that, prior to this event, the western Carolina terrane (Charlotte belt) and the eastern Carolina terrane (Carolina Slate belt) formed separate terranes. The collisional event represented by these high‐pressure assemblages implies amalgamation of these formerly separate terranes into a single composite terrane prior to its accretion to Laurentia.  相似文献   

10.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

11.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

12.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


13.
Abstract The metamorphic history of the Archaean Superior Province crystalline basement in the Palaeoproterozoic Ungava Orogen attests to the importance of structural and geohydrological controls on a retrograde amphibolite-granulite transition. Two distinct metamorphic suites, separated in age by nearly one billion years, are recognized in extensively exposed tonalitic to dioritic metaplutonic gneisses. The older suite comprises c. 2.7-Ga granulite facies assemblages (orthopyroxene-clinopyroxene-hornblende-plagioclase-ilmenite ± biotite ± quartz) that record moderate pressures (±5 kbar) and high temperatures (±800° C). A younger, c. 1.8-Ga suite resulted from amphibolitization of the granulites and is characterized by regionally extensive amphibolite facies mineral zones that broadly parallel the basal décollement of the overlying Proterozoic Cape Smith Thrust Belt. Deformation/mineral growth relationships in the amphibolitized basement indicate that extensive hydration and re-equilibration of the Archaean granulites occurred during thrust belt deformation. The transition from granulite facies to amphibolite facies assemblages is characterized by the growth of garnet-hornblende-quartz ° Cummingtonite coronas between plagioclase and orthopyroxene-clinopyroxene, as well as titanite coronas on ilmenite. Multi-equilibrium thermobarometry on the coronitic assemblages documents re-equilibration of the granulitic gneiss to 7.7 kbar at 644° C in the south and 9.8 kbar at 700° C in the north. The variably deformed, amphibolite facies domain sandwiched between the coronitic garnet zone and the basal décollement is marked by significant metasomatic changes in major element concentrations within tonalite. These changes are compatible with equilibrium flow of an aqueous-chloride fluid down a temperature gradient. The source of fluids for basement hydration/metasomatism is interpreted to be dehydrating clastic rocks in the overlying thrust belt, with fluid flow probably focused along the basal décollement.  相似文献   

14.
In mylonitic gneisses of the Saint-Barthelemy Massif in the French Pyrenees, evidence was found that ultramylonite bands developed by ductile deformation of pseudotachylyte.In the gneiss a mylonitic shape fabric was produced by a continuous structural event during retrogression from amphibolite to upper greenschist facies. Decrease in temperature caused gradual hardening in the gneiss which led to the development of pseudotachylyte bands by intermittent seismic slip. These acted as weak zones in which ductile deformation was concentrated. A microstructure typical of ultramylonite was produced in these deformed pseudotachylyte bands.  相似文献   

15.
The oxygen isotopic compositions of over 100 Archean clastic metasedimentary, felsic metavolcanic and gneissic rocks from selected areas within the Superior Province have been determined. δ18O values of low grade, immature clastic metasediments range from 8.0 to 13.3%. and hence are somewhat depleted in 18O relative to other clastic metasediments. The lower 18O content is attributed to the large proportion of unaltered rock fragments in the Archean metasediments. Felsic metavolcanics have a similar range of δ18O values (7.3 to 13.0%..δ18O values for the middle amphibolite facies Pakwash paragneiss (8.8–11.7%.) are higher than those determined for the amphibolite to granulite facies Twilight paragneiss (7.3–9.2%.). Archean orthogneisses such as the Clay Lake gneiss (7.0–9.0%.), the Cedar Lake gneiss (7.4–8.7%.) and the Footprint gneiss (5.9-8.8%.) have δ18O values similar to those of the Twilight paragneiss. Therefore, at least at metamorphic grades higher than middle amphibolite facies, Archean metasedimentary gneisses may have δ18O values that are indistinguishable from those of Archean orthogneisses, and hence are no longer isotopically recognizable as metasedimentary rocks.  相似文献   

16.
The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations of the geological environments of key tectonic units. The Xilin Gol Complex, consisting of strongly deformed gneisses, schists and amphibolites, is such a key tectonic unit within the CAOB. Lenticular or quasi-lamellar amphibolites are dispersed throughout the complex, intercalated with biotite–plagioclase gneiss. Both rock types experienced amphibolite-facies metamorphism. The protolith of the amphibolite is a basic rock that intruded into the biotite–plagioclase gneiss at 319 ± 4 Ma based on LA-ICPMS zircon U–Pb dating. The basic intrusion was sourced from a modified magma that experienced crystal fractionation and was admixed with slab-derived fluids. The slab-derived fluids, which formed during Early Paleozoic oceanic subduction along the north-dipping Sonidzuoqi–Xilinhot subduction zone, mixed with the magma source and produced subduction-related geochemical signatures superimposed on volcanic arc chemistry. After Early Paleozoic oceanic subduction and arc-continent collision, a transient stage of extension occurred between 313 and 280 Ma in the Sonidzuoqi–Xilinhot area. Deformation and recrystallization during the switch from compression to extension and reheating by the later magmatic intrusions reset the isotope systems of minerals in the Xilin Gol Complex, recorded by a 312.2 ± 1.5 Ma biotite 40Ar/39Ar age from biotite–plagioclase gneiss, a 309 ± 12 Ma zircon intercept age and a 307.5 ± 3.5 Ma hornblende 40Ar/39Ar age from amphibolites in the complex. There was an arc/forearc-related marine basin at the southern margin of the Xilin Gol Complex during the Permian. The closure of the oceanic basin led to Late Paleozoic–Middle Triassic north-dipping subduction beneath the Xilin Gol Complex and induced the amphibolite-facies metamorphism of the complex. The final suturing of the Solonker zone occurred from 269 to 231 Ma. This latest amphibolite-facies metamorphism with pressures of 0.31–0.39 GPa and temperatures of 620–660 °C was recorded at 263.4 ± 1.4 Ma to the Xilin Gol Complex, as indicated by the hornblende 40Ar/39Ar age from the amphibolites, as well as several zircon ages of 260 ± 3–231 ± 3 Ma. The Xilin Gol Complex documented the progressive accretion of a single, long-lived subduction system at the southern margin of the south Mongolian microcontinent from the Early Paleozoic (~452 Ma) to Middle Triassic (~231 Ma). The CAOB shows protracted collision prior to final suturing.  相似文献   

17.
Quartz–amphibole–pyroxene gneiss from the island of Akilia, Southwest Greenland has been claimed to contain the earliest traces of life on Earth in the form of biogenic carbonaceous matter encapsulated as inclusions in apatite crystals. Various lines of evidence, including petrography, geochronology, field relations, and geochemistry, have, however, been presented that challenge this interpretation. Textural relationships and geochemical signatures in this controversial gneiss presented here manifest a complex, spatially variable metamorphic history that includes granulite- and amphibolite-facies overprints and metasomatism. A peak metamorphic, granulite-facies, quartz–orthopyroxene–clinopyroxene–amphibole–magnetite assemblage is preserved in only a few centimeter-scale layers within the 5-m-thick, quartz–amphibole–pyroxene gneiss unit. Calcite veinlets that appear to postdate the peak metamorphism occur in pyroxene. The quartz–amphibole–pyroxene gneiss unit has subsequently experienced isochemical (except hydration) amphibolite-facies alteration during which pyroxenes were retrogressed to amphiboles and magnetite, and calcite was consumed. Parts of the quartz–amphibole–pyroxene gneiss that contain texturally late hornblende have experienced metasomatic alteration by Al-carrying fluids. These fluids controlled the alteration of pyroxenes and amphiboles to hornblende, and modified the trace-element composition by remobilizing LREE and Eu. Apatite has variable REE composition and 87Sr/86Sr in the quartz–amphibole–pyroxene gneiss, but on the local scale (cm) is in equilibrium with co-existing silicates. Effective recrystallization of apatite crystals as well as co-existing silicates during several stages of the metamorphic history makes the intact preservation of diagenetic apatite with encapsulated primary carbonaceous matter implausible. Hence, it is highly unlikely that Akilia apatite could serve as repository of the earliest traces of life on Earth.  相似文献   

18.
Granulite facies anorthosites on Holsenøy Island in the Bergen Arcs region of western Norway are transected by shear zones 0.1–100 m wide characterized by eclogite facies assemblages. Eclogite formation is related to influx of fluid along the shears at temperatures of c. 700d?C and pressures in excess of 1.7 GPa. Combined carbon and nitrogen stable isotope, 40Ar/36Ar, trace-element and petrological data have been used to determine the nature and distribution of fluids across the anorthosite-eclogite transition. A metre-wide drilled section traverses the eclogitic centre of the shear into undeformed granulite facies garnet-clinopyroxene anorthosite. Clinozoisite occurs along grain boundaries and microcracks in undeformed anorthosite up to 1 m from the centre of the shear and clinozoisite increases in abundance as the edge of the shear zone is approached. The eclogite-granulite transition, marked by the appearance of sodic pyroxene and loss of albite, occurs within the most highly sheared section of the traverse. The jadeite-in reaction coincides with increased paragonite activity in mica. The separation between paragonite and clinozoisite reaction fronts can be semiquantitatively modelled assuming advective fluid flow perpendicular to the shear zone. The inner section of the traverse (0.25 m wide) is marked by retrogressive replacement of omphacite by plagioclase + paragonite accompanied by veins of quartz-phengite-plagioclase. C-N-Ar characteristics of fluid inclusions in garnet show that fluids associated with precursor granulite, eclogite and retrogressed eclogite are isotopically distinct. The granulite-eclogite transition coincides with a marked change in CO2 abundance and δ13C (<36ppm, δ13C=-2% in the granulite; <180 ppm, δ13C=-10% in the eclogite). The distribution of Ar indicates mixing between influxed fluid (40Ar/36Ar > 25 times 103) and pre-existing Ar in the granulite (40Ar/36Ar < 8 times 103). δ15N values decrease from +6% in the anorthosite to +3% within the eclogite shear. The central zone of retrogressed eclogite post-dates shearing and is characterised by substantial enrichment of Si, K, Ba and Rb. Fluids are CO2-rich (δ13C ~ -5%) with variable N2 and Ar abundances and isotopic compositions. Both Ar and H2O have penetrated the underformed granulite fabric more than 0.5m beyond the granulite/eclogite transition during eclogite formation. Argon isotopes show a mixing profile consistent with diffusion through an interconnecting H2O-rich fluid network. In contrast, a carbon-isotope front coincides with the deformation boundary layer, indicating that the underformed anorthosite was impervious to CO2-rich fluids. This is consistent with the high dihedral angle of carbonic fluids, and may be interpreted in terms of evolving fluid compositions within the shear zone.  相似文献   

19.
The Lac St-Jean anorthosite massif underlies an area of over 20,000 km2 and has been emplaced into migmatitic gneisses of the central granulite terrain of the Grenville Province of the Canadian shield. Field data and petrography in an area straddling the anorthosite-gneiss contact, close to Chicoutimi (Quebec) permits an outline of its tecto-magmatic evolution. Depositional magmatic textures in the massif reveals that it crystallized from a magma in a relatively calm tectonic environment. The absence of fusion in pelitic gneisses at the contact proves that the crystallization did not take place at the level presently exposed. The parallelism of subvertical foliation in the enveloping gneisses and the anorthosite indicates that both were deformed together. It is suggested that the deformation results from a diapiric ascent of the anorthosite massif after its consolidation at depth. The depth of consolidation of the anorthosite is estimated at 25–30 km from subsolidus reaction between plagioclase and olivine. The diapiric ascent is further substantiated by the fact that three sets of mafic dykes of different ages, intrusive into the anorthosite, have a mineralogy which indicates successively decreasing P, T conditions of emplacement from granulite fades to amphibolite facies. An evolution of the basement gneisses and the anorthosite is proposed as a working hypothesis; it relies on the fact that metabasite dyke swarms in the basement gneisses represent a period of major crustal extension and could be used as a stratigraphic subdivision of the Grenville Province.  相似文献   

20.
The youngest known ultrahigh‐pressure (UHP) rocks in the world occur in the Woodlark Rift of southeastern Papua New Guinea. Since their crystallization in the Late Miocene to Early Pliocene, these eclogite facies rocks have been rapidly exhumed from mantle depths to the surface and today they remain in the still‐active geodynamic setting that caused this exhumation. For this reason, the rocks provide an excellent opportunity to study rates and processes of (U)HP exhumation. We present New Rb–Sr results from 12 rock samples from eclogite‐bearing gneiss domes in the D'Entrecasteaux Islands, and use those results to examine the time lag between (U)HP metamorphism and later ductile thinning, penetrative fabric development and accompanying metamorphic retrogression at amphibolite facies conditions during their exhumation. A Rb–Sr age for a sample of mafic eclogite (with no preserved coesite) from the core zone of the Mailolo gneiss dome (Fergusson Island) provides a new estimate of the timing of HP metamorphism (5.6 ± 1.6 Ma). The strongly deformed quartzofeldspathic and granitic gneisses (90–95% by volume) that enclose variably retrogressed relict blocks of mafic eclogite (5–10% by volume) yield Rb–Sr isochron ages from 4.4 to 2.4 Ma. For the UHP‐bearing gneisses of Mailolo dome, previously published U–Pb ages on zircon and our Rb–Sr isochron ages are consistent with a mean time lag of 2.2 ± 1.5 Ma (~95% c.i.) for passage of the rock between eclogite and amphibolite facies conditions. New thermobarometric data indicate that the main syn‐exhumational foliation developed at amphibolite facies conditions of 630–665 °C and 12.1–14.4 kbar. These pressure estimates indicate that the lower crust of the Woodlark Rift was unusually thick (>40 km) at the time of the amphibolite facies overprint, possibly as a result of accumulation and underplating of UHP‐derived material from below. Our data imply a minimum unroofing rate of 10 ± 7 mm year?1 (~95% c.i.) for the (U)HP body from minimum HP depths (73 ± 7 km) to lower crustal depths. This minimum unroofing rate reinforces previous inferences that the exhumation from the mantle to the surface of the gneiss domes in the D'Entrecasteaux Islands took place at plate tectonic rates. On the basis of previous structural studies and the new thermobarometry, we attribute the high (cm year?1) exhumation to diapiric ascent of the partially molten terrane from mantle depths, with a secondary contribution from pure shear thinning of the terrane after its arrival in the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号