首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The aim of the paper lies in the identification of possible significant linear trends at monthly, seasonal and annual timescales in the Mediterranean during the second half of the 20th century. Monthly and daily records of 63 stations have been used to elaborate several precipitation indices: sum of daily precipitation (SDP) for rainfall >0.1 mm, >10 mm and >95th percentile, of number of rainy days (RD) >0.1 mm and >10 mm and of mean daily precipitation (MDP) >0.1 mm and >10 mm. For each index the stations have been gathered together by Rotated Principal Component Analyses to determine 8 sub-areas which can be considered as identical for all the timescales at the spatial scale of the research. Trends have been estimated from the scores of each eigenvector retained in all RPCAs. They are mainly non existant or non significant decreasing, even if a few monthly trends appear to be significantly diminishing, primarily during winter months, March in the Atlantic region, October in the Mediterranean Spain, December in the Lions and Genoa Gulfs, January, winter and the year in Greece, winter and the year in Italy and winter in the Near East and increasing in April in the two gulfs. Correlation coefficients between SDP>0.1 mm and other indices have been computed: the significant trends seem mainly related to RD>10 mm, which represents a high percentage of the total rainfall amount. Greece is remarkable: SDP>0.1 mm and >10 mm decrease significantly during January, winter, the rainy season and the entire year whereas SDP>95th percentile increases significantly, in accordance with the climatic change scenarios for the end of this century as does the decreasing of the total monthly and seasonal rainfall.  相似文献   

2.
The study evaluated CORDEX RCMs’ ability to project future rainfall and extreme events in the Mzingwane catchment using an ensemble average of three RCMs (RCA4, REMO2009 and CRCM5). Model validation employed the statistical mean and Pearson correlation, while trends in projected rainfall and number of rainy days were computed using the Mann-Kendall trend test and the magnitudes of trends were determined by Sen’s slope estimator. Temporal and spatial distribution of future extreme dryness and wetness was established by using the Standard Precipitation Index (SPI). The results show that RCMs adequately represented annual and inter-annual rainfall variability and the ensemble average outperformed individual models. Trend results for the projected rainfall suggest a significant decreasing trend in future rainfall (2016–2100) for all stations at p < 0.05. In addition, a general decreasing trend in the number of rainy days is projected for future climate, although the significance and magnitude varied with station location. Model results suggest an increased occurrence of future extreme events, particularly towards the end of the century. The findings are important for developing proactive sustainable strategies for future climate change adaption and mitigation.  相似文献   

3.
Summary Using digitized IR images from the European satellite Meteosat, 153 squall lines (SLs) were observed over Western Africa during July, August and September 1986 and 87. The SL mean rainfall volume was computed using the daily rainfall amounts of more than 800 raingauges: 15 km3 in 1986 and 22.5 km3 in 1987. A mean amount of 15 mm was collected per rainy episode at a given station, however, as only about half of the stations situated under a SL experienced a rainy episode, the rainfall amount averaged along the total SL’s swath was 6.8 mm. With the help of the 8 daily Meteosat slots the SL’s area daily variation could be estimated: namely a minimum around noon and a maximum around midnight. Using the SLs displacements (east–west) one had access to the daily variation of the rainfall volume, a minimum in the morning and a maximum toward the end of the afternoon, as already found by several authors who used Meteosat images.  相似文献   

4.
A GCM land surface scheme was used, in off-line mode, to simulate the runoff, latent and sensible heat fluxes for two distinct Australian catchments using observed atmospheric forcing. The tropical Jardine River catchment is 2500 km2 and has an annual rainfall of 1700 mm y–1 while the Canning River catchment is 540 km2, has a Mediterranean climate (annual rainfall of 800 mm y–1) and is ephemeral for half the year. It was found that the standard version of a land surface scheme developed for a GCM, and initialised as for incorporation into a GCM, simulated similar latent and sensible heat fluxes compared to a basin-scale hydrological model (MODHYDROLOG) which was calibrated for each catchment. However, the standard version of the land surface scheme grossly overestimated the observed peak runoff in the wet Jardine River catchment at the expense of runoff later in the season. Increasing the soil water storage permitted the land surface scheme to simulate observed runoff quite well, but led to a different simulation of latent and sensible heat compared to MODHYDROLOG. It is concluded that this 2-layer land surface scheme was unable to simulate both catchments realistically. The land surface scheme was then extended to a three-layer model. In terms of runoff, the resulting control simulations with soil depths chosen as for the GCM were better than the best simulations obtained with the two-layer model. The three-layer model simulated similar latent and sensible heat for both catchments compared to MODHYDROLOG. Unfortunately, for the ephemeral Canning River catchment, the land surface scheme was unable to time the observed runoff peak correctly. A tentative conclusion would be that this GCM land surface scheme may be able to simulate the present day state of some larger and wetter catchments but not catchments with peaky hydrographs and zero flows for part of the year. This conclusion requires examination with a range of GCM land surface schemes against a range of catchments. Received: 9 June 1995 / Accepted: 4 April 1996  相似文献   

5.
Summary A spatiotemporal trend analysis of different magnitudes related to the number and length of the dry spells in Catalonia (NE Spain) has been conducted based on daily rainfall records taken from 40 rain gauges during the second half of the 20th century. Dry spells have been computed for threshold levels of 0.1, 1, 5 and 10 mm/day at annual and semi-annual scales. The winter half-year is defined from October to March and the summer half-year from April to September. The magnitudes considered are the number, the maximum length and the mean length of the dry spells for every year and half-year. The spatial patterns of the average values of these magnitudes at the annual scale show a greater similarity with those of the summer half-year than with those of the winter half-year. A S–N or SW–NE gradient of the number of dry spells appears during the summer half-year for every threshold level. Trends of the analysed magnitudes are derived from linear regression and local statistical significances at the 95% confidence level are established using the Mann-Kendall test. Field significant trends are investigated by means of Monte Carlo simulations. The most relevant finding is that the number of dry spells per year depicts significant trends for the annual and winter-half series, with an overall decreasing trend for 5 and 10 mm/day thresholds. These observed trends are in agreement with changes in North Atlantic cyclone tracks and in Mediterranean Low dynamics, due to increasing greenhouse gas concentrations.  相似文献   

6.
Summary The west coast of the Indian peninsula receives very heavy rainfall during the summer Monsoon (June–September) season with average rainfall over some parts exceeding 250 cm. Heavy rainfall events with rainfall more than 15 cm day−1 at one or more stations along the west coast of India occur frequently and cause considerable damage. A special observational programme, Arabian Sea Monsoon Experiment, was carried out during the monsoon season of 2002 to study these events. The spatial and temporal distributions of intense rainfall events, presented here, were used for the planning of this observational campaign. The present study using daily rainfall data for summer monsoon season of 37 years (1951–1987) shows that the probability of getting intense rainfall is the maximum between 14° N–16° N and near 19° N. The probability of occurrence of these intense rainfall events is high from mid June to mid August, with a dip in early July. It has been believed for a long time that offshore troughs and vortices are responsible for these intense rainfall events. However, analysis of the characteristics of cloud systems associated with the intense rainfall events during 1985–1988 using very high resolution brightness temperature data from INSAT-IB satellite shows that the cloud systems during these events are characterized by large spatial scales and high cloud tops. Further study using daily satellite derived outgoing longwave radiation (OLR) data over a longer period (1975–1998) shows that, most of these events (about 62%) are associated with systems organized on synoptic and larger scales. We find that most of the offshore convective systems responsible for intense rainfall along the west coast of India are linked to the atmospheric conditions over equatorial Indian Ocean.  相似文献   

7.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

8.
Summary During the summer season, typhoons form in the western north Pacific Ocean and travel westward towards China. Some recurve northward off the coast, whereas others continue in over land. These typhoons bring heavy rainfall to the Huai river basin in eastern central China. In August 1975, the remnant of typhoon Nina caused exceptionally heavy rainfall in the Hongru river basin, in the mountainous upper reaches of the Huai river. The rainfall lasted five days from 4 to 8 August. This type of nearly stationary typhoon can cause rainfall of large intensity for a long duration, and is suitable for maximization to derive probable maximum precipitation (PMP) estimates. The PMP is transformed into a probable maximum flood hydrograph that is subsequently used to design spillways etc. In this study the PMP values have been estimated using a hydrometeorological method involving depth-area-duration analysis, moisture maximization, and altitude adjustment for typhoon Nina, for 1, 2, and 3 days duration. Areal PMP values were obtained for the entire Hongru river catchment, as well as for the subcatchments upstream the dams at Banqiao (762 km2), Shimantan (230 km2), Boshan (580 km2), and Suyahu (4 498 km2). For point values, the PMP was estimated to 1 200 mm/day, 1 460 mm/2 days, and 1 910 mm/3 days at altitudes about 100 m, which agrees well with previous studies. Received February 21, 1997 Revised May 27, 1997  相似文献   

9.
Summary  Reports of changes in the seasonal and annual rainfall in Nigeria suggests that a more detailed analyses of the geographic extent of these changes and of their impact on agriculture could be of value. Variation in the growing season (April to September) rainfall from stations across Nigeria was analysed over the 30-yr period, 1960–90. Regression analyses were used to examine long-term trends. Principal component and cluster analyses were used to group stations with similar trends in standardised seasonal rainfall. Mean accumulated standardised seasonal rainfall were used to examine short- and medium-term trends for each of the groups identified. Significant (P ≤ 0.05) decreases in rainy season rainfall were found at 8 stations mostly in the Guinea and arid/semi-arid savannas of northern Nigeria, whereas no station showed significant increases. Examination of the monthly (April through September) rainfall showed that only three – Kano, Sokoto and Potiskum in the arid/semi-arid savanna – of the twenty-three stations used in the analysis had declining rainfall trends for each of the months April to September and subsequently declining seasonal rainfall trends. However, 12 to 15 stations had consistently declining rainfall trends in atleast some but not all the growing season months. However, a similar pattern was not the case in terms of increasing rainfall trends, where only one to three stations had consistently increasing rainfall trends in some but not all of the months from April to September. Stations that showed increasing rainfall trends were in the southern parts of Nigeria. Six groups with similar patterns in standardised seasonal rainfall were identified by Principal Component and Cluster analyses. For most of the groups, the period from 1967 to 1973 was that of consistently below average seasonal rainfall. However, the timing and extent of the decline varied with location. Common to stations in four of the six groups was a negative trend in seasonal rainfall for the period considered. The geographic variation in seasonal rainfall trends has tremendous agricultural significance since there are indications that the reliability of the season is decreasing from the humid forest zone with positive seasonal trends to the arid/semi-arid savanna with significant negative seasonal trends. Received June 24, 1998 Revised December 18, 1998  相似文献   

10.
 The Mark 2 version of the CSIRO coupled global climatic model has been used to generate a 1000-year simulation of natural (i.e. unforced) climatic variability representative of “present conditions”. The annual mean output from the simulation has been used to investigate the occurrence of decadal and longer trends over the globe for a number of climatic variables. Here trends are defined to be periods of years with a climatic anomaly of a given sign. The analysis reveals substantial differences between the trend characteristics of the various climatic variables. Trends longer than 12 years duration were unusual for rainfall. Such trends were fairly uniformly distributed over the globe and had an asymmetry in the rate of occurrence for wet or dry conditions. On the other hand, trends in surface wind stress, and especially the atmospheric screen temperature, were of longer duration but primarily confined to oceanic regions. The trends in the atmospheric screen temperature could be traced deep into the oceanic mixed layer, implying large changes in oceanic thermal inertia. This thermal inertia then constituted an important component of the `memory' of the climatic system. While the geographic region associated with a given trend could be identified over several adjacent grid boxes of the model, regional plots for individual years of the trend revealed a range of variations, suggesting that a consistent forcing mechanism may not be responsible for a trend at a given location. Typical return periods for 12-year rainfall trends were once in 1000 years, highlighting the rarity of such events. Using a looser definition of a trend revealed that drying trends up to 50 years duration were also possible, attributable solely to natural climatic variability. Significant (∼20% to 40%) rainfall reductions per year can be associated with a long-term drying trend, hence such events are of considerable climatic significance. It can take more than 100 years for the hydrologic losses associated with such a trend to be overcome. Overall, the simulation provides new and useful insights into climatic trends, and quantifies a number of poorly observed characteristics. The results highlight the extensive and pervasive influence of unforced natural climatic variability as an omnipresent generator of climatic trends. Received: 20 January 2000 / Accepted: 21 September 2000  相似文献   

11.
Summary We analysed long-term temperature trends based on 12 homogenised series of monthly temperature data in Switzerland at elevations between 316 m.a.s.l. and 2490 m.a.s.l for the 20th century (1901–2000) and for the last thirty years (1975–2004). Comparisons were made between these two periods, with changes standardised to decadal trends. Our results show mean decadal trends of +0.135 °C during the 20th century and +0.57 °C based on the last three decades only. These trends are more than twice as high as the averaged temperature trends in the Northern Hemisphere. Most stations behave quite similarly, indicating that the increasing trends are linked to large-scale rather than local processes. Seasonal analyses show that the greatest temperature increase in the 1975–2004 period occurred during spring and summer whereas they were particularly weak in spring during the 20th century. Recent temperature increases are as much related to increases in maximum temperatures as to increases in minimum temperature, a trend that was not apparent in the 1901–2000 period. The different seasonal warming rates may have important consequences for vegetation, natural disasters, human health, and energy consumption, amongst others. The strong increase in summer temperatures helps to explain the accelerated glacier retreat in the Alps since 1980. Authors’ addresses: Martine Rebetez, WSL Swiss Federal Research Institute, 1015 Lausanne, Switzerland; Michael Reinhard, Laboratory of Ecological Systems (ECOS), EPFL Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.  相似文献   

12.
Recent changes in dry spell and extreme rainfall events in Ethiopia   总被引:2,自引:1,他引:2  
Summary This paper assesses recent changes in extremes of seasonal rainfall in Ethiopia based on daily rainfall data for 11 key stations over the period 1965–2002. The seasons considered are Kiremt (‘main rains’, June–September) and Belg (‘small rains’, February/March–May). The Mann-Kendall and linear regression trend tests show decreasing trends in the Kiremt and the Belg extreme intensity and maximum consecutive 5-day rains over eastern, southwestern and southern parts of Ethiopia whereas no trends are found in the remaining part of Ethiopia. In general, no trends are found in the yearly maximum length of Kiremt and Belg dry spells (days with rainfall below 1 mm) over Ethiopia.  相似文献   

13.
Summary Spatial scales of variability in seasonal rainfall over Africa are investigated by means of statistical and numerical techniques. In the statistical analysis spatial structure is studied using gridded 0.5° resolution monthly data in the period 1948–1998. The de-seasonalized time series are subjected to successive principal component (PC) analysis, allowing the number of modes to vary from 10 to 24, producing cells of varying dimension. Then the original rainfall data within each cell are cross-correlated (internal), then averaged and compared with the adjacent cells (external) for each PC solution. By considering the ratio of internal to external correlation, the spatial scales of rainfall variability are evaluated and an optimum solution is found whose cell dimensions are approximately 106 km2. The aspect of scale is further studied for southern Africa by consideration of numerical model ensemble simulations over the period 1985–1999 forced with observed sea surface temperatures (SSTs). The hindcast products are compared with observed January to March (JFM) rainfall, based on a station-satellite merged analysis of precipitation (CMAP) data at 2.5° resolution. Validations for different sized areas indicate that cumulative standardized errors are greatest at the scale of a single grid cell (104 km2) and decrease 20–30% by averaging over successively larger areas (106 km2).  相似文献   

14.
Summary The diurnal cycle of rainfall over the eastern equatorial Indian Ocean was studied for the period 23rd October 2001 to 31st October 2003 using hourly data from the Triton buoy positioned at 1.5° S and 90° E. An analysis of the active and weak spells of rainfall for different seasons revealed peaks in the late evening hours in Winter, Summer and Fall and in early morning hours (in Spring) in 2002. The active spell of rainfall peaked in the afternoon hours, during Winter, Spring and Summer in 2003, which agrees with the previous results of Janowiak et al. (1994). An analysis of rainfall events showed that Fall 2002 had a maximum number of rainfall events (90) and minimum (60) were observed in Spring 2003. Further it was found that the majority of rain events (>60%) were less than 3 hours in duration throughout the study period. The longer duration rainfall events (i.e. rain events greater than 6 hour duration) contributed significantly to Spring 2002 (20% of the total rainfall) and Winter 2003 (21% of the total rainfall). Harmonic analysis of the hourly rainfall data for different seasons revealed that diurnal harmonic explains more than 80% of the variance for all seasons. Furthermore, the diurnal harmonic has a maximum amplitude for all seasons except summer, where the semidiurnal and six hourly harmonics are significant.  相似文献   

15.
Summary ?The LITFASS project (‘Lindenberg Inhomogeneous Terrain – Fluxes between Atmosphere and Surface: a Long-term Study’) of the Deutscher Wetterdienst (DWD, German Meteorological Service) aims to develop and to test a strategy for the determination and parameterisation of the area-averaged turbulent fluxes of heat, momentum, and water vapour over a heterogeneous land surface. These fluxes will be representative for an area of about 10 * 10 km2 (while the typical patch size is between 10−1 to 100 km2) corresponding to the size of a grid cell in the present operational numerical weather prediction model of the DWD. LITFASS consists of three components: – the development of a non-hydrostatic micro-α-scale model (the LITFASS local model – LLM) with a grid-size of about 100 * 100 m2, – experimental investigations of land surface – atmosphere exchange processes and boundary layer structure within a 20 * 20 km2 area around the Meteorological Observatory Lindenberg, – the assimilation of a data base as an interface between measurements and modelling activities. The overall project strategy was tested over a three-week period in June 1998 during the LITFASS-98 field experiment. This paper gives an overview on the LITFASS project, on the design and measurement program of the LITFASS-98 experiment, and on the weather conditions during the period of the experiment. Conclusions are formulated for the operational realisation of the LITFASS measurement concept and for future field experiments aimed at studying the land surface – atmosphere interaction in the Lindenberg area. Selected results from both experimental and modelling activities are presented in a series of companion papers completing this special issue of the journal. Received June 18, 2001; revised March 18, 2002; accepted April 2, 2002  相似文献   

16.
Summary.  Mesoscale convective precipitation systems in the Alpine region are studied by analyzing radar and rain gauge data. The data from weather radars in Austria, France, Germany, and Switzerland are combined into a composite. Availability of radar data restricts the study mainly to the northern part of the Alpine region. Mesoscale convective systems (MCS) occur often in this region and are comparable to large systems observed in the USA. Seven precipitation events lasting one to six days from the years 1992–1996 are examined in detail. They all moved west to east and showed no diurnal preference in formation or dissipation. They reach sizes of 2 − 6 · 104 km2. MCS with leading-line trailing-stratiform structure tended to be larger and more intense. A 25-year set of rain gauge data indicates that a giant MCS (covering more than 4 · 104 km2 with more than 30 mm/day) occurs every 6 years in the northern Alpine region. MCS occur more frequently in the southern Alpine region. Received February 25, 1999/Revised June 29, 1999  相似文献   

17.
The study has analyzed the variability and trends in monthly, seasonal and annual rainfall and rainy days of four locations over different agro-ecological zones of Bihar, namely Samastipur (zone-I), Madhepura (zone-II), Sabour (zone-IIIA) and Patna (zone-IIIB). The Mann–Kendall nonparametric test was employed for detection of statistical significance and slopes of the trend lines were determined using the method of least square linear fitting. The variability and trends of onset of effective monsoon and length of monsoon period were also analyzed using the same method. The mean annual rainfall varies from 1137 mm at Patna to 1219 mm at Sabour. July is the rainiest month in all the zones followed by August. Maximum increase in annual rainfall was found at Sabour (40.1% of mean/30 years at 95% confidence level) and minimum for Patna (10.1% of mean/30 years). Significant increasing trend of rainfall during July, August and September at rates of 41.9, 83.2, and 112.7% of the mean/30 years, respectively has been noticed at Madhepura. Analysis of rainy days indicates that rainy days increased during winter and annually for all the sites. The mean effective onset of monsoon varies from 18th June at Sabour to 28th June at Patna. The trends in the date of effective onset of monsoon indicate that the date tends to be early in all the sites except Madhepura. But a significant delayed trend in the onset at a rate of 2.8% of the mean/30 years has been observed for Madhepura. The early trend of the effective onset of monsoon and increasing trends of length of monsoon season have been observed for Samastipur, Sabour and Patna.  相似文献   

18.
Summary k-day extreme precipitation depths (k=1,2,3, … 30) for the climatological network of Belgium (165 stations) are analysed to detect a possible evolution in the occurrence of extreme rainfall events during the 1951–1995 reference period. The calendar year and the hydrological summer and winter are considered separately. Spearman’s rank correlation coefficient shows a strong spatial correlation between extreme k-day precipitation events, depending on the time of the year (lower during summer than during winter) and increasing with k. In some cases the distances of de-correlation exceed 200 km which is comparable to the size of the country. Due to this correlation, tests for trends have been carried out on the leading principal components (PC) derived from the covariance matrix. Various PC selection rules have been applied to identify the number of components to analyse. The number of components needed to reproduce a given proportion of the total variance varies, with larger values for summer than for winter and a decrease with growing k. The Fisher test is used as a global test. It combines the individual Mann-Kendall trend tests carried out on the selected PC scores. Significant trends have been found in extreme winter k-day precipitation for all the values of k and none in extreme summer precipitation. The results for the annual k-day precipitation depths are between those for the two seasons: no trend for small k because summer events dominate and a significant trend for k larger than 7 due to the winter events. Analysis of a few stations with long-term series shows no significant trend for the period 1910–1995, these series also reproduce almost the same trends as those found for the shorter 1951–1995 period. Received April 23, 1999 Revised December 6, 1999  相似文献   

19.
Rainfall characteristics during the annual rainy season are explored for the Mzingwane catchment of south-western Zimbabwe, for both historic period (1886–1906) and more recent times (1950–2015), based on available daily and monthly precipitation series. Annual and seasonal rainfall trends are determined using the modified Mann-Kendall test, magnitude of trends test and Sen’s slope estimator. Rainfall variability is quantified using the coefficient of variation (CV), precipitation concentration index (PCI) and standard precipitation index (SPI). Results suggest that contemporary mean annual rainfall may not have changed from that measured during the historic period of 1886–1906. However, the number of rainy days (≥ 1 mm) has decreased by 34%, thus suggesting much more concentrated and increased rainfall intensity. A notable shift in both the onset and cessation dates of the rainy season is recorded, particularly during the twenty-first century, which has resulted in a significantly reduced (p < 0.05) length of the rainy season. The combination of a reduced number of rainy days (≥ 1 mm) and a shortened rainy season suggests that long intra-season dry spells have become more common through time and have considerable negative consequences for agriculture and wetland ecosystem in the region. In addition, high spatio-temporal rainfall variability and seasonal PCI values indicate strong seasonality in the rainy season. Based on the SPI results, the El Niño Southern Oscillation (ENSO) strongly influences rainfall variability. The results further suggest high uncertainty in rain season characteristics, which requires effective planning for water needs.  相似文献   

20.
Summary ?Long-term trends in annual, seasonal, and monthly mean temperature (abbreviated as AMT, SMT, MMT, respectively) in Japan are investigated. The magnitude of a trend is measured by assuming it to be linear. The statistical significance of a site trend is assessed by the Mann-Kendall (MK) with consideration of serial correlation. The statistical field significance of trends in three major climatic regions: Hokkaido (I), areas adjacent to the Japan sea (II), and to the Pacific Ocean (III), is evaluated by the bootstrapping test which preserves cross-correlation among sites. From 1900 to 1996, AMT increased from 0.51 to 2.77 °C averaged across all 46 sites. At the regional scale, AMT increased by 1.38, 1.08, and 1.32 °C in regions I, II, and III, respectively. The trends at both sites and regions are statistically significant even at the significance level (α) of 0.005. SMT increased from 0.47 to 3.69 °C at all the 19 available sites with the highest increases in winter and spring. Except for a few series, the changes in SMT are statistically significant at α = 0.01. The upward trends in SMT are statistically significant even at α = 0.001 in both regions II and III. MMT at 19 sites increased within a wide range from 0.17 to 4.12 °C. The increases are largest in the winter and spring months, and most of the site increases are statistically significant at α = 0.05. The trends are statistically significant at α = 0.025 and 0.001 in regions II and III, respectively. The trends in both SMT and MMT in region III are larger than those in region II. Received January 28, 2002; revised November 11, 2002; accepted December 1, 2002 Published online May 19, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号