首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A salient feature of sea level records from the Adriatic Sea is the frequent occurrence of energetic seiches of period about 21 h. Once excited by a sudden wind event, such seiches often persist for days. They lose energy either to friction within the Adriatic, or by radiation through Otranto Strait into the Mediterranean.The free decay time of the dominant (lowest mode) seiche was determined from envelopes of handpassed sea level residuals from three locations (Bakar, Split and Dubrovnik) along the Croatian coast during twelve seiche episodes between 1963 and 1986 by taking into consideration only time intervals when the envelopes decreased exponentially in time, when the modelled effects of along-basin winds were smaller than the error of estimation of decay time from the envelopes and when across-basin winds were small. The free decay time thus obtained was 3.2±0.5 d. This value is consonant with the observed width of the spectral peak.The decay caused by both bottom friction and radiation was included in a one dimensional variable cross section shallow water model of the Adriatic. Bottom friction is parameterized by the coefficient k appearing in the linearized bottom stress term ρ0u (where u is the along-basin velocity and ρ0 the fluid density). The coefficient k is constrained by values obtained from linearization of the quadratic bottom stress law using estimates of near bottom currents associated with the seiche, with wind driven currents, with tides and with wind waves. Radiation is parameterized by the coefficient f appearing in the open strait boundary condition ζ =auh/c (where ζ is sea level, h is depth and c is phase speed). This parameterization of radiation provides results comparable to allowing the Adriatic to radiate into an unbounded half plane ocean. Repeated runs of the model delineate the dependence of model free seiche decay time on k and a, and these plus the estimates of k allow estimation of a.The principle conclusions of this work are as follows.
1. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence.
2. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography.
3. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d.
4. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu|u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.
  相似文献   

2.
Hydrodynamic model application to Buzzards Bay is performed using a three-dimensional Boundary-fitted Hydrodynamic model in this study. The model is forced with observed tidal harmonic constants along the open boundaries and winds on the surface. The main focus of the present study is to model the detailed wind and tide-induced circulation in Buzzards Bay. The observed surface elevations and currents given in [Butman, B., Signell, R., Shoukimas, P., Beardsley, R.C., 1988. Current Observations in Buzzards Bay, 1982–1986. Open File Report 88-5. United States Geological Survey] and the tide and current harmonics given in [Signell, R.P., 1987. Tide- and Wind-forced Currents in Buzzards Bay, Massachusetts. Technical Report WH-87-15. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts] are used to validate the model predictions. The calibrated model is then used to study the relative contributions of tidal and wind forcing on the instantaneous and residual circulation in Buzzards Bay. The amplitudes and phases of the principal tidal constituents at 10 tidal stations in Buzzards Bay obtained from a harmonic analysis of a 60-day simulation compare well with the observed data. The predicted amplitude and phase of the M2 tidal constituent of surface elevations at these stations are, respectively, within 4 cm and 5° of the observed data. The errors in the model-predicted M2 harmonic principal current speeds are less than 6 cm/s, and the principal current directions and phases are within 14° of the observations. The observed surface elevations and currents given in [Butman, B., Signell, R., Shoukimas, P., Beardsley, R.C., 1988. Current Observations in Buzzards Bay, 1982–1986. Open File Report 88-5. United States Geological Survey] are used to validate the model-predicted low-frequency surface elevations and currents. The model predictions in low-frequency surface elevations at Woods Hole closely follow the trends seen in the observations with a correlation coefficient of 0.735, but fail to capture some of the peak surges seen in the observations. The model-predicted low-frequency currents in the east–west direction at stations in Buzzards Bay compare well with the observations with the correlation coefficient exceeding 0.811 and the model capturing the trends seen in the observations, for the most part. However, the model-predicted north–south velocities does not compare well with the observations. The model-predictions agree with the observations that the tidal currents in Vineyard Sound lagged the currents in Buzzards Bay by more than 3 h. The interaction of wind stress with large bathymetric gradients was shown to cause many vortices in Buzzards Bay, as seen from the model predictions. Model simulations show that the winds play a more dominant role than the tides in the generation of the barotropic residual currents in Buzzards Bay, while the model-predicted tide-induced residual current was seen to be small.  相似文献   

3.
A numerical experiment of the M2 tide in the Yellow sea   总被引:1,自引:0,他引:1  
Semi-diurnal tides in the Yellow Sea are calculated by integrating the shallow water wave equations with frictional and inertial terms.It is found that the results depend on the bottom friction. In the frictionless case the tidal range is unstably amplified because of the occurrence of resonance of the semi-diurnal tidal component in Inchon Bay. When the bottom friction is in the form of the square of velocity, the results agree fairly well with the observations.The following results are obtained. First, the tidal range is larger at the coast of the Korean Peninsula than at the China Coast. Second, resonance of the semi-diurnal tide occurs in Inchon Bay. Third, bottom friction is very important in the shallow ocean,i.e., when the bottom friction become large, the phase lag is retarded and the tidal range decreases.The amplitude and the phase lag calculated in this study agree well with the observations in the case of b =b 2 V¦V¦, b 2=0.0026, especially in the coast of the Korean Peninsula.  相似文献   

4.
The numerical analysis of the stationary field of current velocity on the upper boundary of the bottom boundary layer in the Barents Sea is performed on the basis of a simplified model taking into account the fields of wind velocity and density of water for the principal periods of the seasonal cycle and the bottom topography. The analysis is based on the climatic BarKode database and the data on the wind velocity over the Barents Sea for the last 50 yr. The numerical results demonstrate that the field of bottom currents is fairly nonuniform and the current velocities vary from several fractions of 1 cm/sec to 5 cm/sec in the zones with noticeable slopes of the bottom. The estimates of the thickness of the bottom boundary layer are obtained for the constant coefficient of bottom friction C f = 0.04. In the major part of the water area of the Barents Sea, the thickness of the bottom boundary layer is close to 1 m. In the regions with significant slopes of the bottom, it increases to 2–2.5 m and, in the two zones of intensification of the bottom currents, becomes as large as 5 m. The maximum estimate of the coefficient of turbulent viscosity is close to 5 cm2/sec. The mean value of the coefficient of vertical density diffusion K S is equal to 2.34 cm2/sec and its standard deviation is equal to 1.52 cm2/sec. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–49, September–October, 2007.  相似文献   

5.
A two-dimensional hydrodynamic model application to the San Francisco Bay was performed using the Boundary-Fitted HYDROdynamic model (BFHYDRO). The model forcing functions consist of tidal elevations along the open boundary and fresh water flows from the Delta Outflow. The model-predicted surface elevations compare well with the observed surface elevations at five stations in San Francisco Bay. Mean error in the model predicted surface elevations and currents are less than 7 and 9%, respectively. Correlation coefficients for surface elevations and currents are higher than 0.94 and 0.95, respectively. The amplitudes and phases of the principal tidal constituents at 24 tidal stations in San Francisco Bay, obtained from a harmonic analysis of a 90-day simulation compare well with the observed data. The predicted amplitude and phase of the M2 tidal constituent at these stations are respectively within 8 cm and 8° of the observed data. Maximum errors in the K1 harmonic amplitudes and phases are less than 3 cm and 7° respectively. The asymmetric diurnal and semi-diurnal tidal ranges and spring and neap tidal cycles of the surface elevations and currents are well reproduced in the model at all stations.  相似文献   

6.
The vertical structure of the M2 tidal current in the Yellow Sea is analyzed from data acquired using an acoustic Doppler current profiler. The observed vertical profiles of the M2 tidal current are decomposed into two rotating components of counter-clockwise and clockwise, and restructured using a simple one-point model with a constant vertical eddy viscosity. The analyzed results show that the internal fictional effect dominates the vertical structure of the tidal current in the bottom boundary layer. In the Yellow Sea, the effect of the bottom friction reduces the current speed by about 20–40% and induces the bottom phase advance by about 15–50 minutes. In the shallower coastal regions, the effects of bottom topography are more prominent on the vertical structure of tidal currents. The vertical profile of the tidal current in summer, when the water column is strongly stratified, is disturbed near the pycnocline layer. The stratification significantly influences the vertical shear and distinct seasonal variation of the tidal current.  相似文献   

7.
We adopt a parameterized internal tide dissipation term to the two-dimensional (2-D) shallow water equations, and develop the corresponding adjoint model to investigate tidal dynamics in the South China Sea (SCS). The harmonic constants derived from 63 tidal gauge stations and 24 TOPEX/Poseidon (T/P) satellite altimeter crossover points are assimilated into the adjoint model to minimize the deviations of the simulated results and observations by optimizing the bottom friction coefficient and the internal tide dissipation coefficient. Tidal constituents M2, S2, K1 and O1 are simulated simultaneously. The numerical results (assimilating only tidal gauge data) agree well with T/P data showing that the model results are reliable. The co-tidal charts of M2, S2, K1 and O1 are obtained, which reflect the characteristics of tides in the SCS. The tidal energy flux is analyzed based on numerical results. The strongest tidal energy flux appears in the Luzon Strait (LS) for both semi-diurnal and diurnal tidal constituents. The analysis of tidal energy dissipation indicates that the bottom friction dissipation occurs mainly in shallow water area, meanwhile the internal tide dissipation is mainly concentrated in the LS and the deep basin of the SCS. The tidal energetics in the LS is examined showing that the tidal energy input closely balances the tidal energy dissipation.  相似文献   

8.
Measurements of tidal current and wave velocity made at 0.69 and 1.85 m above a rough seafloor exhibit large current gradients (boundary layer) in the water column. The logarithmic boundary layer flow model was fitted to the measurements, and thus roughness (z0) and friction velocity (u*) parameters were derived. The roughness parameter values were generally consistent with the observed upstream physical roughness. The values of both parameters for conditions in the rough turbulence flow regime are generally larger (much larger for ebb) than earlier published values for similar measurements of currents in the absence of significant waves but are comparable to values from recent measurements of currents in the presence of storm waves. The high parameter values here appear to relate more to the magnitude of the current and to the upstream physical bottom roughness than to the magnitude of the seastate. Large boundary layers in the flow at the seabed have a profound effect on the design of offshore structures such as offshore pipelines.  相似文献   

9.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

10.
秦皇岛海域海流特征及规模化养殖对其影响的观测研究   总被引:1,自引:1,他引:0  
秦皇岛海域是辽东湾与渤海中部及渤海湾进行物质和能量交换的重要通道。本文基于海床基观测平台获取的夏秋季海流连续观测资料,运用调和分析和滤波等方法对该海域的海流特征及其对规模化养殖的响应进行了研究。结果表明:秦皇岛海域最显著的潮流是M2分潮流,其最大流速介于20.0~36.9 cm/s之间,远小于辽东湾东部海域M2分潮流最大流速;秋季秦皇岛海域余流流速介于0.2~2.5 cm/s之间,整体上较辽东湾东侧海域余流弱,辽东湾底层可能存在逆时针的弱环流系统;夏季秦皇岛海域M2和K1分潮流的最大流速均大于秋季;养殖活动对余流影响较大,养殖区中部A7、A8站余流的垂向平均流速比养殖区边缘A6站分别减小76%和18%左右。  相似文献   

11.
A numerical model is developed to examine tidal properties of the Bay of Fundy and Gulf of Maine. The model is run with a pure M2 tidal input on the open boundary, and calibrated by adjusting the friction coefficient to achieve good agreement with inshore observations. An examination of aspects of the tidal regime is made, with particular attention paid to the upper reaches of the bay. Mean energy and work values are computed. The fundamental period of the system is estimated. The effects of tidal power plants on the tidal regime are examined.  相似文献   

12.
基于FVCOM的泉州湾海域三维潮汐与潮流数值模拟   总被引:1,自引:0,他引:1  
基于FVCOM海洋数值模式,采用非结构的三角形网格和有限体积法,建立了泉州湾海域高分辨率(26 m)的三维潮汐、潮流数值模型。模拟结果同2个验潮站和3个连续测流站的观测资料符合良好,较好地反映了泉州湾内潮汐、潮流运动的变化状况和分布特征,给出了M2、S2、K1、O1 4个主要分潮的同潮图、表层潮流椭圆分布,以及模拟区域内最大可能潮差、表层最大可能潮流流速和潮余流分布。分析表明,4个分潮的最大潮汐振幅和迟角差分别为219 cm和19°,85 cm和25°,26 cm和12°,26 cm和9°;石湖港以东海域的潮波为逆时针旋转的驻波,以西海域为前进波;最大可能潮差由湾口的8.0m向湾内增加至8.8 m。湾内潮流类型为规则半日潮流,落潮最大流速大于涨潮最大流速,北乌礁水道为强流区,表层最大可能潮流流速为2.4 m/s;湾口潮流运动以逆时针方向的旋转流形式为主,湾内的潮流运动以往复流形式为主,长轴走向主要沿着水道方向,与等深线和海岸线平行;四个分潮流表层最大流速分别为1.4 m/s,0.58 m/s,0.12 m/s,0.10 m/s。余流流速大小与潮流强弱有密切的联系,表、中、底层最大余流流速分别为26 cm/s,20 cm/s,16 cm/s,三者在水平方向基本呈北进南出的分布形态。  相似文献   

13.
Expressions derived for the friction coefficient in an oscillatory rotating turbulent bottom boundary layer (BBL) over rough, incompletely rough (smoothly rough), and smooth underlying surfaces are incorporated as an individual module into a two-dimensional nonlinear tidal model, and the standard version of the model and its modified analogue are used to discuss the titular subject. It is established that the dynamics of tides in the Taylor basin can change noticeably under the effect of hydrodynamic properties of the sea bottom. Such changes occur mainly in the influence domains of amphidromies. In the remaining parts of the basin, relative changes in the amplitudes and phases of tidal sea-surface level elevations do not exceed ±10% and ±10°, respectively. The largest discrepancies of tidal characteristics take place in the cases of the incompletely rough and smooth sea bottoms; the smallest discrepancies, in the case of the rough sea bottom. Estimates for the changes in tidal characteristics that are caused by the usually neglected effects of rotation and phase difference between the bottom friction and the tidal velocity at the upper BBL boundary are presented as well.  相似文献   

14.
A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river’s head to its mouth.  相似文献   

15.
基于FVCOM(Finite Volume Coast and Ocean Model)模型,建立北印度洋海域(31°~102°E,16°S~31°N)的M2和S2分潮潮波数值模式,研究北印度洋半日潮潮汐、潮流分布特征。对底摩擦系数进行数值试验,利用代价函数梯度下降法,得到分潮调和常数向量均方根偏差(RMSE)的变化曲线,逼近并确定最优的底摩擦系数。将采用该系数的模拟结果与TOPEX/Poseidon卫星高度计交叉点的调和常数数据、国际海道测量组织(IHO)及部分文献中的验潮站数据进行比较与验证,一致性较好。其中对比卫星数据的振幅偏差为2~4 cm、迟角偏差为7°~8°,与验潮站数据的振幅偏差为3~6 cm、迟角偏差为8°~9°。根据模拟结果,分析了北印度洋海域M2和S2分潮潮波传播特征和潮流椭圆的空间分布特征等。M2分潮潮波在阿拉伯海南部有1个无潮点,在波斯湾内有2个无潮点,最大振幅超过80 cm;潮流在西北印度洋和孟加拉湾中部大多为顺时针旋转,其余海域大多为逆时针旋转;流速在阿拉伯海东北部、安达曼海、波斯湾和孟加拉湾北部较大,最大流速为160 cm/s,其他海域较小。S2分潮的潮波传播特征、无潮点的位置和潮流椭圆的空间分布特征等都与M2分潮类似,但潮波振幅和潮流流速等都相对M2分潮较小。研究完善了北印度洋海域2个主要半日分潮M2和S2的整体特征。  相似文献   

16.
Tidal energy budget in the Zhujiang(Pearl River) Estuary(ZE) is evaluated by employing high-resolution baroclinic regional ocean modeling system(ROMS). The results obtained via applying the least square method on the model elevations are compared against the tidal harmonic constants at 18 tide stations along the ZE and its adjacent coast. The mean absolute errors between the simulation and the observation of M_2, S_2, K_1 and O_1 are 4.6, 2.8, 3.2 and 2.8 cm in amplitudes and 9.8°, 15.0°, 4.6° and 4.6° in phase-lags, respectively. The comparisons between the simulated and observed sea level heights at 11 tide gauge stations also suggest good model performance. The total tidal energy flux incoming the ZE is estimated to be 343.49 MW in the dry season and larger than 336.18 MW in the wet season, which should due to higher mean sea level height and heavier density in the dry season. M_2, K_1, S_2, O_1 and N_2, the top five barotropic tidal energy flux contributors for the ZE,import 242.23(236.79), 52.97(52.08), 24.49(23.96), 16.22(15.91) and 7.10(6.97) MW energy flux into the ZE in dry(wet) season, successively and respectively. The enhanced turbulent mixing induced by eddies around isolated islands and sharp headlands dominated by bottom friction, interaction between tidal currents and sill topography or constricted narrow waterways together account for the five energy dissipation hotspots, which add up to about 38% of the total energy dissipation inside the ZE.  相似文献   

17.
-Nonlinear tidal waves in a kind of estuary are studied in the paper using one-dimensional nonlinear hydrody-namic equations with friction. The estuary has exponentially varying width B=B0 e-bx and uniform depth h. The one-dimensional hydrodynamic equations are solved by perturbation method. It was found that our solution included two special cases, Pelisenpeki's solution and Airy's solution. The former can be got by letting b=0 in our solutions, and the latter by setting 6 = 0 and f= 0 (f is linear frictional coefficient). In terms of the second-order solution, the physical mechanism of nonlinear tidal waves in estuaries with gradually varying cross-section is explored. It is shown that, under the assumption of linear friction coefficient, shallow water constituent waves consist of two parts, one is produced by shallow water nonlinear effect outside the estuary, the other is generated by shallow water nonlinear effect inside estuary. In addition, the physical mechanism of the residual tidal current and  相似文献   

18.
The Sofala Bank, a wide shelf located along the central coast of Mozambique, hosts tides with high amplitudes. The Regional Ocean Modelling System (ROMS) was used to analyse the tidal currents on the bank and to investigate their effects on the stratification and generation of tidal fronts. During spring tides, barotropic tidal currents with maximum values ranging from 40 cm s–1 to 70 cm s–1 are found on the central bank. The major axis of the tidal ellipses for M2 and S2 follow a cross-shelf direction with mainly anticlockwise rotation. Similar to observations, three distinct regimes occur: (i) a warm well-mixed region on the inner shelf where the depths are <30 m; (ii) a wellmixed colder region above the shelf edge; and (iii) a stratified region offshore. The model shows that the tides lead to cooling where two criteria are satisfied: the Simpson and Hunter parameter log10(h/U3) <3.2 and the depth h >30 m. The shelf edge of the bank is important for internal tide generation. Two frontal structures result, one offshore between cooler mixed waters and warmer stratified waters and the other in shallow inshore waters, between cooler mixed waters and solar heated mixed waters.  相似文献   

19.
Baroclinic circulation in highly stratified and partially stratified estuaries is characterised by a two-layer flow: a bottom salt- water inflow and a surface brackish-water outflow. Tidal period variation of the thicknesses of a two-layer flow is observed to be associated with mixing, bottom stress and hydraulic characteristics of superposed tidal and gravity currents. Here, both analytical two-layer hydraulic equations with weak friction and a numerical model including a turbulence closure were utilised to understand the mechanism of the layer tendency within a two-layer flow under different barotropic flow conditions. It has been found that in the weak bottom friction case, a gravity current has two critical solutions at the layer thickness equal to 0·5Hand 0·292H. The layer thickness towards a particular critical solution is dependent on the sign of the bottom stress, i.e. when the bottom stress is opposite (favor) to the bottom gravity current, its layer thickness converges to 0·5H(0·292H). In the case of strong bottom stress and mixing opposing the gravity current, the solutions of the gravity current layer thickness at 0·5Hand 0·292Hwill not be valid. Both mixing and vorticity produced by bottom stress erode the halocline, and produce a high velocity core in the mid-depth, which leads to the thickness of a bottom gravity current greater than 0·5H. These internal hydraulic tendency and mixing processes, varying with time-dependent barotropic tidal current forcing, determine the tidal period variation of the gravity current structure.  相似文献   

20.
《Oceanologica Acta》1998,21(3):429-446
With the application of a two-dimensional nonlinear hydrodynamical-numerical semi-implicit model, the principal tides M2, S2, K2, N2, K1, P1 and O1 were studied. Energy budgets of the semi-diurnal M2 and S2 were calculated separately. The linear sum of these budgets was compared with the tidal energy budget obtained when these two tidal constituents interact. Since a quadratic form for the bottom friction was used, remarkable differences were found. The results show that in the area of the Colorado River delta, the dissipation of tidal energy is very strong. Intense tidal currents were observed in the same region and over the Salsipuedes Sill. Energy budgets calculated for forcing waves of different periods, but of the same amplitude, were used to estimate the principal periods of resonance. Although the topography of the Gulf is very complex, the model reproduced observed sea-surface elevation and current patterns. To study spring tide conditions, the above seven tidal constituents were simulated. Estimates of residual currents reveal the presence of several intense cyclonic and anticyclonic gyres. Over the Salsipuedes Sill, residual currents of the M2 tide reach values of more than 15 cm s−1. Horizontal distributions of dissipation rates of tidal energy and of kinetic energy were also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号