首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用1986—2016年62个国家气象站5—10月的逐日和逐小时降水观测资料,分析了辽宁省强降水的发生规律,包括强降水发生范围,逐年、逐月、逐旬、逐时变化特征、空间分布特征、雨强分布规律等。结果表明:1)1994年辽宁省强降水频繁、雨强大、降水范围大,为典型强降水年份。2)辽宁省强降水主要集中在7—8月,尤其是7月下旬—8月上旬,占总发生次数的38.3%。3)早晨和下午为短时强降水高发时段,上午及夜里为短时强降水的低发时段。4)辽宁省强降水呈东多西少、南多北少特点,存在3个高值区, 2个低值区。5)辽宁省短时强降水以20—40mm/h为主,日强降水以50—100mm/24h为主。  相似文献   

2.
利用1971—2003年辽宁省53个地面国家级气象站降水自记纸记录的经数字信息化处理后的逐小时降水量数据和2004—2014年自动气象站的降水观测资料,分析了4—10月辽宁省短时强降水的时空变化特征。结果表明:1971—2014年辽宁省短时强降水的发生次数与年降水总量分布对应,均呈东部地区多、西部地区少的分布特征,与辽宁地区的地形和低空西南急流的风向等气候特征密切联系。1971—2014年辽宁地区年平均短时强降水发生次数为1.5—3.5次/a,并呈剧烈的振荡变化,短时强降水发生次数与辽宁省旱涝变化具有较好的对应关系。7月和8月辽宁地区短时强降水发生最多,辽宁省东部的丹东地区短时强降水发生次数明显偏多;6—8月旬短时强降水发生次数呈先增加后减少的变化,7月下旬短时强降水发生次数达到峰值,辽宁地区不同地域短时强降水发生次数的变化趋势也不同。受辽宁地区地形和低空急流的日变化影响,辽宁地区短时强降水发生次数的日变化也具有明显的地域性,辽宁省北部和最西部地区短时强降水发生次数的日变化不明显;辽宁省南部地区短时强降水多出现在后半夜至早晨,其他地区短时强降水多出现在下午。  相似文献   

3.
基于甘肃省81个自动气象站2002—2012年逐小时降水数据,分析了甘肃省近11 a来短时强降水的时空变化特征。结果表明:短时强降水频次自甘肃省西北向东南逐步递增,陇东南地区是甘肃省短时强降水发生频次最多、强度最强的地区。短时强降水存在2个高发中心,一个在以合水为中心的陇东地区,另一个在以徽县为中心的徽成盆地。短时强降水主要发生在午后至前半夜,出现时段集中在16:00—00:00,17时前后是短时强降水天气高发时段。短时强降水主要出现在5—9月,其中7—8月是一年中出现最多的月份,其次是6月。近11 a来,短时强降水频次呈上升趋势,2006年和2010年出现了2个峰值,其中2010年最多,发生52次,2004年最少只有17次。  相似文献   

4.
济南市区局地短历时强降水预报指标初探   总被引:1,自引:0,他引:1  
通过普查2007--2010年济南市区39次局地短历时强降水天气过程,分析了济南市区局地短历时强降水的年际、月际特征以及出现局地短历时强降水的主要时段和多发区域,结果表明:济南市区局地短历时强降水主要出现在6—8月,其中又集中在7—8月;局地短历时强降水的高发时段是11-17时,其中又主要集中在14—16时;市区南到东南部和西南部是局地短历时强降水的多发区域。利用高空和地面常规观测资料、自动站资料以及多普勒雷达产品,对济南市区局地短历时强降水进行天气分型,建立预报指标,并在2011年汛期进行了预报检验。  相似文献   

5.
大连地区短时强降水天气特征及预报指标研究   总被引:1,自引:0,他引:1  
利用2004—2013年4—10月大连地区7个气象站和249个自动气象站逐小时降水观测数据及常规气象观测数据,对大连地区短时强降水的时空分布特征及气候特征、演变趋势和环流背景进行了分析,并建立了强降水天气预报指标。结果表明:2004—2013年大连地区各气象站短时强降水年平均发生次数为2.2—2.8次,南部和东部地区短时强降水年平均发生次数呈略增多的趋势,中部和西北部地区短时强降水年平均发生次数变化较小,中北部地区短时强降水年平均发生次数呈略下降的趋势。大连地区短时强降水最早出现在4月,最晚出现在10月,7—8月为短时强降水集中出现的月份,强降水多出现在02—10时。短时强降水发生次数具有明显的区域分布特征,由东部向中部和西部呈递减的趋势,大连东北部地区短时强降水发生次数最多,南部地区次之,西北部瓦房店地区短时强降水发生次数最少;其中7月北部地区短时强降水发生次数最多,8月东部地区短时强降水发生次数最多,其他月份短时强降水发生次数较少,说明大连地区短时强降水发生分散性较强。925hPa与850hPa平均比湿、700hPa温度露点差、850hPa与500hPa温度差平均值、K指数平均值、0℃层平均高度及暖云层平均厚度等参数阈值可用于短时强降水实际预报业务中,可为大连地区强降水预报提供参考。  相似文献   

6.
对阳江市1980—2015年降雨资料进行统计分析,结果表明:阳江市强降水(小时雨强≥20 mm)年平均天数为14.2 d,连续性强降水(1 d出现2次或以上的强降水)年平均天数为4.2 d,超强降水(小时雨强≥50 mm)年平均2.1 d;强降水主要出现在4—9月,其中5—6月是阳江市强降水多发期,04:00—11:00和14:00—16:00是阳江强降水多发时段。  相似文献   

7.
利用2012—2021年海南岛323个地面气象观测站逐小时降水资料及ERA5高分辨率资料,统计分析了海南岛近10 a的极端短时强降水时空分布特征,利用合成分析法探讨了产生极端短时强降水的环流背景。结果表明:海南岛极端短时强降水每年约为422.3次,占短时强降水的8%。极端短时强降水的季节和日变化明显,多发生在4—10月的午后(14:00—19:00),8月站次最多,近10 a发生极端短时强降水的站次最多为11次,出现在海南岛西北部。极端短时强降水日变化呈单峰型,峰值出现在17:00,为每年62.1次。午后发生极端短时强降水的平均降水强度较大,均值为67.8 mm·h-1,峰值为111.5 mm·h-1。海南岛极端短时强降水年、暖季(4—9月)的空间分布有两个高发地区,为海南岛西北部和东部沿海地区,暖季的天气系统是影响海南岛极端短时强降水的主要天气系统。海南岛极端短时强降水逐月空间分布差异与海陆风、地形均有密切关系,各月触发条件不同,7—8月极端短时强降水相对较多。  相似文献   

8.
基于临夏州2006—2018年4—9月自动气象站逐日小时降水量,在传统降水百分位法、Z指数法和平方根变换法3种方法中,确定了短时强降水阈值的最佳计算方法,在此基础上分析临夏州短时强降水的时空分布特征。平方根变换法确定的临夏州短时强降水阈值为14.6 mm·h^(-1)。临夏州短时强降水空间分布表现为自中南部分别向西北和东南减少,短时强降水年平均出现次数为7.3次,2018年出现次数最多;7—8月短时强降水出现频次最多,占短时强降水总频次的81.1%,8月达到最高峰,占总频次的55.8%;短时强降水日变化呈4峰分布,短时强降水主要出现在18:00—23:00,占短时强降水总频次的55.8%;小时最大降水量为55.8 mm,出现在22:00;短时强降水持续时间为1 h的占90.5%,同一时次出现1站次短时强降水的占93.3%,临夏州短时强降水多为阵发性,且空间分布多为孤立零散。  相似文献   

9.
张凯静  江敦双  丁锋 《山东气象》2018,38(1):108-114
利用1981—2012年4—10月青岛市7个观测站逐时降水量资料和同期NCEP再分析资料,统计分析青岛市短时强降水的时空分布特征,建立青岛市短时强降水天气概念模型。结果表明:青岛市年短时强降水日数无明显变化趋势;4—10月均有短时强降水出现,7—8月是多发月份;短时强降水的日变化有2个多发时段,主峰在下午到傍晚时段,次峰在凌晨时段;即墨、平度、黄岛为青岛市短时强降水的多发区域,其中黄岛为连续性短时强降水出现最多的区域;青岛市产生短时强降水的天气系统可分为六种类型,西风槽型、横槽型、冷涡型、热带低值系统型、西北气流型、切变线型,其中西风槽型出现次数最多。  相似文献   

10.
利用1980—2019年降水格点数据集和NCEP再分析资料,通过K-means聚类分析法对大渡河上游强降水环流形势进行分型,并分析了各类强降水时空分布特征,探究了21世纪10年代该流域强降水频率增加的原因。结果表明:大渡河上游强降水环流形势可分为两脊一槽型、多波动型和横槽型3种类型。第一类常发生在6月,第二类集中在7—8月,第三类主要集中在7月,三类降水强度的空间分布均以小金县为中心向南北方向递减。1980—2009年以多波动型强降水为主,21世纪10年代转为以横槽型强降水为主,并且强降水频率在21世纪10年代明显增加,主要原因是21世纪10年代7月横槽型环流盛行,导致此类型强降水总频率增加。  相似文献   

11.
选取2007—2014年陕西省98个气象站降水和冰雹观测资料、1970—2013年数据完整的90个气象站的雷暴观测资料,采用统计方法分析陕西雷暴、冰雹、短时强降水的气候特征。结果表明:陕西强对流天气多发生于10—20时,其他时间发生的概率比较低。冰雹多发生在5—8月;短时强降水大多出现在6—9月,雷暴主要出现在6—8月。2007—2014年,陕西降雹天气年际变化不明显,短时强降水的年际变化较大。1970—2013年雷暴日整体呈减少的趋势,2007—2013年明显偏少。冰雹天气的高值中心集中在陕西北部,短时强降水呈北少南多的特点,雷暴为中部少、南北多。利用2007—2014年探空资料和MICAPS资料统计陕西省冰雹和短时强降水天气的物理量指标,为短时临近天气预报提供依据。  相似文献   

12.
中国东南部地区4-6月强降水的低频变化特征   总被引:3,自引:2,他引:1  
利用全国2 400多台站逐日降水资料,分析了中国东南部地区4—6月10~30 d低频强降水的时空变化特征。结果表明:4—6月10~30 d低频强降水的方差大值区在中国的长江及其以南地区,中心位于江南的中东部,东南部地区4—6月10~30 d低频强降水距平的第一模态反映该区域呈一致变化。功率谱分析表明第一模态时间变化的周期以10~30 d低频分量为主。根据区域强降水及其10~30 d低频强降水、区域强降水正交经验函数(EOF)分析的第一模态时间系数(PC1)及PC1的10~30 d低频分量的年际方差,结合它们两两之间逐年的相关系数,确定了区域强降水10~30 d强振荡典型年份。对典型年降水异常分布的方差分析,表明强振荡年区域总降水量异常主要是由10~30 d强降水的低频变化引起的。  相似文献   

13.
利用鹤壁1986—1999年夏秋季强降水资料,寻找出鹤壁市夏秋季强降水消空指标和预报指标。利用48h、24h夏秋季强降水预报指标和人工神经元B—P网络降水量预报结果,定量做出鹤壁市夏秋季强降水预报。  相似文献   

14.
济南市区短时强降水特征分析   总被引:23,自引:7,他引:16  
用2006—2008年5—9月的济南市区区域自动气象观测站资料和高空、地面资料,分析了济南市区出现短时强降水(R≥15mm/h)的年际、月际、时际以及强度特征,并分析了产生短时强降水的不同天气系统类型,为今后济南市区短时强降水的短时临近预报和预警提供参考。  相似文献   

15.
贵州省汛期短时降水时空特征分析   总被引:10,自引:2,他引:8  
彭芳  吴古会  杜小玲 《气象》2012,38(3):307-313
利用贵州区域84测站1991—2009年汛期(4—9月)逐小时降水量资料,分别定义各站点的小时降水量的强降水阈值。阈值的分布有两个高值中心,最强中心在西南部望谟站,西北部的强降水阈值较低。同时利用各站点阈值统计19年不同月份的强降水事件频数,其分布显示:4月份东部和中部偏南地区频数较高,5月份频数高值区呈东北—西南向,随后几个月逐渐向西北推进。4—6月事件频数逐渐增大,7月维持,8—9月开始减少。各月强降水事件发生时次统计表明:一天中有三个相对高值时段,23:00—02:00、05:00—08:00和17:00—20:00,而白天强降水事件很少。短时强降水事件发生时次的空间分布表明,西北部的强降水事件多数发生在傍晚到23:00,中部的强降水集中在23:00—02:00,东南部在05:00—08:00。  相似文献   

16.
伍红雨  李芷卉  李文媛  郑璟 《气象》2020,46(6):801-812
利用2003—2017年广东2000多个区域自动气象站逐小时降水资料,分析了不同历时的广东极端强降水的年和月变化特征,在此基础上分析汛期4—9月的极端强降水频次的时空分布特征。结果表明:近15年来,广东不同历时极端强降水出现频率的年变化趋势存在明显差异,在年以及前、后汛期,24 h呈减少趋势;3、1 h呈上升趋势,其中1 h极端强降水频率在年和后汛期呈显著增加趋势。5—6月是广东极端强降水最易出现的时段,频次大值主要出现在粤西南阳江、江门、茂名,中部和北部的广州、清远以及粤东的汕头、揭阳等地。后汛期极端强降水主要出现在粤中南部地区,特别是南部沿海。1 h极端强降水次数在珠江三角洲以及茂名信宜、高州等地增加趋势明显,而粤东的大部分地区为减少趋势。地形和大气环流等可能是广东极端强降水频次中心形成的重要因素。  相似文献   

17.
利用1992—2018年芜湖站逐小时降水量资料,统计分析不同量级短时强降水的变化特征,总结了四种类型短时强降水的物理量特征和风廓线雷达指标。结果表明,芜湖市短时强降水容易出现在夏季午后,2008—2018年中等强度的短时强降水更为频发。短时强降水发生时,可降水量较大,湿层较厚,副热带高压边缘型(以下简称"副高边缘型")短时强降水各指数明显偏强,比湿和假相当位温的垂直递减率较大,使得对流不稳定增强。低槽东移型和西北气流型短时强降水在发生前3—5 h有不同高度的西南风风速的增加,1 km以下水平风的"垂直切变"较大;副高边缘型和台风型短时强降水发生前后整层风速较小、"垂直切变"较小。在短时强降水的临近预报中,要充分考虑到不同天气类型下物理量和风廓线雷达指标的差异。  相似文献   

18.
利用2012—2021年3—5月儋州市自动气象站逐时降水量的观测资料,分析儋州市春季短时强降水发生规律,包括春季短时强降水的年、月、日变化及空间分布等,结果表明:春季短时强降水主要出现在5月,趋于波动减少趋势;春季短时强降水主要发生在午后到傍晚,夜间出现短时强降水非常少;短时强降水的空间分布具有东多西少的特征;在南海低槽型环流影响下出现短时强降水站次最多,年均16.2站次。  相似文献   

19.
利用东营2011—2018年自动气象站逐小时降水量资料,分析东营地区短时强降水的发生规律,包括短时强降水的空间分布和年、月、日以及强度变化特征。结果表明:东营地区短时强降水呈现西北部多南部少的分布特征;短时强降水年变化无明显规律,降水范围越大,出现次数越少;月分布呈单峰状,7—8月是多发月份,4—10月均有短时强降水发生;日变化呈波浪型,出现高峰时段在傍晚前后。东营地区产生短时强降水的天气系统可分为西风槽型、副高边缘型、切变线型、高空冷涡型、台风型等5种类型,其中切变线型出现次数最多,并给出了这5 种类型的天气学概念模型,同时得出不同范围和不同类型短时强降水过程关键环境参量的阈值。  相似文献   

20.
对比分析了国家级气象观测站逐时地面降水资料和CMORPH卫星-地面自动站融合降水数据在反映中国南方地区2008—2013年4—10月短时强降水时空分布特征上的差异,并在此基础上利用融合降水数据分析了短时强降水与暴雨的关系,结果表明:(1) 融合降水数据所反映的短时强降水的大尺度特征与站点资料一致,并能更好地描述地形的影响;(2) 短时强降水的季节变化与东亚夏季风进程和雨带的季节性位移密切相关;(3) 短时强降水与暴雨日的空间分布特征和季节变化趋势相似,4月下半月—10月上半月,超过60%的短时强降水发生在暴雨日,同时短时强降水也是暴雨形成的重要因素,短时强降水暴雨日数占总暴雨日数的比例(68.6%)普遍高于非短时强降水暴雨日(31.4%),但是短时强降水暴雨日的发生具有显著的季节和区域差异。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号