首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Preliminary geochemical mapping was carried out within urban areas in Tampere Central Region, Finland, to gain a better understanding of element concentrations in urban soil and to provide information on baselines in soil within urban centres for soil contamination assessment purposes. The soil samples were taken from central city parks, day-care centres and school yards, and residential areas. Various sampling depths have generally been used in urban geochemical surveys. The aim of this study was to compare the results from two commonly used sample types taken from the same sites in urban soil: single samples of minerogenic topsoil from the 0–25 cm layer and composite samples of minerogenic topsoil from a depth of 0–2 cm. The concentrations of most of the studied trace elements showed a significant correlation between samples from 0 to 2 and 0 to 25 cm, but element concentrations differed between the two studied sample depths. For most of the studied elements, the median concentrations were higher in the 0–25 cm samples, but anomalous concentrations were more often found in the 0–2 cm samples. Some elements had elevated concentrations when compared with the Finnish guideline values for soil contamination assessment. This study did not conclusively establish whether a sampling depth of 0–2 or 0–25 cm should be recommended for similar studies in the future. Selection of the sampling depth in geochemical studies greatly depends on the aim of the project. In order to determine the upper limits of geochemical baseline variation, the deeper sampling depth appears to be more feasible. However, for the preliminary health risk assessment of areas with sensitive land uses, e.g. children’s playgrounds, samples from 0–2 cm depth are considered informative. Such samples may also be used to indicate local sources of dusting creating site-specific hotspots of potentially harmful elements in urban topsoil.  相似文献   

2.
以天津盐碱荒地农垦过程为例 ,分析盐碱荒地农垦为水田种植水稻后土壤环境中微量元素的变化特征。结果表明 ,随着垦殖年限的增加 ,Cd、As、Hg元素大量富集在 0~ 2 0cm土壤中 ,其原因与污水泡田相关 ;Cu、、Zn、Mn、Ba等植物生长必需的元素在 2 0~ 4 0cm的土壤中的含量高于 0~ 2 0cm土壤中的含量 ,与 0~ 10cm土壤中这些元素有一部分已经被植物吸收有关 ,B的含量在 0~ 2 0cm中较高 ,与人工施肥有关。污水灌溉仍是农业生产中土壤微量元素变化的主要影响因素。  相似文献   

3.
Drastically disturbed soils caused by opencast mining can result in the severe loss of soil structure and increase in soil compactness. To assess the effects of mining activities on reconstructed soils and to track the changes in reclaimed soil properties, the variability of soil properties (soil particle distribution, penetration resistance (PR), pH, and total dissolved salt (TDS)) in the Shanxi Pingshuo Antaibao opencast coal-mine inner dump after dumping and before reclamation was analyzed using a geostatistics method, and the number of soil monitoring points after mined land reclamation was determined. Soil samples were equally collected at 78 sampling sites in the study area with an area of 0.44 km2. Soil particle distribution had moderate variability, except for silt content at the depth of 0–20 cm with a low variability and sand content at the depth of 20–40 cm with a high variability. The pH showed a low variability, and TDS had moderate variability at all depths. The variability of PR was high at the depth of 0–20 cm and moderate at the depth of 20–40 cm. There was no clear trend in the variance with increasing depth for the soil properties. Interpolation using kriging displayed a high heterogeneity of the reconstructed soil properties, and the spatial structure of the original landform was partially or completely destroyed. The root-mean-square error (RMSE) can be used to determine the number of sampling points for soil properties, and 40 is the ideal sampling number for the study site based on cross-validation.  相似文献   

4.
The distribution and bioavailability of Hg in vegetable-growing soils collected from the estuary areas of Jiulong River, China, were studied. Concentrations of Hg in top-soils, soil profiles and plant samples were measured with the method of hydride generation atomic fluorescence spectrometry after microwave digestion. Mercury species in soils were determined with the sequential extraction procedures based on Kingston method. Results showed that Hg concentrations in top-soils ranged from 49.8 to 1,685 ng g?1, with an average of 510 ng g?1 which was more than twice higher than the mercury limit (250 ng g?1 at pH < 6.5) of soil quality set for edible agricultural products in China (HJ 332-2006). High levels of Hg were found to mainly distribute in the top-soils from the northern, western and southern part of the estuary areas. Hg concentrations decreased with the increases of profile depths, except for one sample (S15) in which Hg level in the depth of 0–20 cm was found lower than that in the 20–40 cm. Hg in most of soil samples in non-mobile forms accounted for 46–82 % of total Hg in soils, while Hg in the mobile forms only 0.6–8.7 %. No significant correlation of Hg concentrations between the vegetables and the soils was observed in the studied areas, which indicates that the transfer factors could only reflect the abilities of Hg uptake and accumulation in a specific plant, but they are unsuitable to be used as the general indexes for the mobility and bioavailability of Hg in soils.  相似文献   

5.
Soil moisture variability and controls are little known in large gullies of the Loess Plateau which represent complex topography with steep slopes. This study analyzed spatial–temporal variability of soil moisture at the 0–20, 20–40, 40–60, and 60–80 cm depths in a large gully of the Loess Plateau based on root-zone soil moisture measurements for 3 years (2009–2011). The result showed that mean soil moisture, standard deviation (SD), and coefficient of variation, were highly dependent on depth; the highest mean value was observed at the 20–40 cm depth, while the lowest one was at the 0–20 cm depth. The SD increased with mean soil moisture for various depths as soil moisture was relatively wet; however, a transition that SD decreased with mean soil moisture occurred when soil moisture was relatively dry. Positive correlations exist between moisture contents over different depths, and that the relationships of the neighboring layers are relatively high with R 2 from 0.70 to 0.76. Correlation analysis, principle component analysis, and stepwise multiple regression analysis showed that soil particle size distribution and topography (slope and elevation) were the main environmental factors controlling soil moisture variability in the large gully.  相似文献   

6.
The spatial heterogeneity of soil nutrients influences crop yield and the environment. Previous research has focused mainly on the surface layer, with little research being carried out on the deep soil layers, where high root density is highly related to crop growth. In the study, 610 soil samples were collected from 122 soil profiles (0–60 cm) in a random-sample method. Both geostatistics and traditional statistics were used to describe the spatial variability of soil organic matter (SOM) and total nitrogen (TN) deeper in the soil profile (0–60 cm) with high root density from a typical Mollisol watershed of Northeast China. Also, the SOM and TN in farmland and forest (field returned to forest over 10 years) areas was compared. The spatial autocorrelations of SOM at 0–50 cm depth and TN at 30–60 cm depth were strong, and were mainly influenced by structural factors. Compared to farmland, SOM and TN were typically lower in the 0–30 cm depth of the forest areas, while they were higher in the 30–60 cm depth. As well, both SOM and TN decreased from the 0–20 cm layer to the 30–40 cm layer, and then discontinues, while they continuously decreased with increasing soil depth in the farmland. SOM and TN were typically higher at the gently sloped summit of the watershed and part of the bottom of the slope than at mid-slope positions at the 0–30 cm depth. SOM and TN were lower on the back slope at the 30–60 cm depth, but were higher at the bottom of the slope. Also, the spatial distribution of the carbon storage and nitrogen storage were all highest at the bottom of the slope and part of the summit, while they were lowest in most of back slope in depth of 0–60 cm, and mainly caused by soil loss and deposition. SOM at 0–60 cm and TN at 0–40 cm greater than the sufficiency level for crop growth (3.7–79.2 and 0.09–3.09 g kg?1, respectively) covered 99 % of the total area, yet for TN, over 35 % of the total area was less than the insufficiency level at the 40–60 cm depth. Generally, accurately predicting SOM and TN is nearly impossible when based only on soil loss by water, although the fact that variability is influenced by elevation, soil loss, deposition and steepness, was shown in this research. Nitrogen fertilizer and manure application were needed, especially in conjunction with conservation tillage in special conditions and specific areas such as the back slope, where soil loss was severe and the deep soil that lacked TN was exposed at the surface.  相似文献   

7.
江苏省土壤元素地球化学基准值   总被引:14,自引:0,他引:14       下载免费PDF全文
土壤元素地球化学基准是指自然环境中土壤元素正常含量,属于土壤固有的化学组成与结构特征。江苏省现有国土面积约102 600 km2,至2007年已经完成全省1∶250 000多目标区域地球化学调查。按照4 km2采集1个样品、采样深度150~200 cm,16 km2分析测试1个组合样,共获得全省6 127个代表自然环境土壤之样品的52个元素与TOC含量的数据,剔除异常含量数据后,以平均含量代表全省土壤元素地球化学基准值、"基准值±1.5或2倍标准离差"表示元素基准值变化范围,获得了江苏省土壤52个元素及TOC的地球化学基准值,为土壤环境评价等提供了基础资料。结果表明:(1)全省土壤大多数元素含量数据不服从正态分布,但剔除异常数据后对平均含量影响不明显;(2)人为活动因素导致江苏土壤的Cd、Hg、Se、N等元素在地表20 cm以上深度发生显著富集,给建立土壤元素地球化学基准值增添了新的难度;(3)成土母质、土壤成因类型与地貌等差异是影响江苏土壤元素含量分布的基本要素。  相似文献   

8.
Bone coal, as a main mining object, can be used by local inhabitants as daily fuel and by local industrial enterprises as industrial fuel in Pinglin County, Shaanxi Province, China. This study reports how the environmental ecosystems have been polluted around the Badao bone coal mine. Geochemical samples (e.g. rock, water, soil, edible plant and animal) were collected. Bone coal from the Badao mine contains Se up to 75 µg/g Se and 28 µg/g Se in ashes after its combustion, with higher contents of other trace elements. Bone coal and its ash seem to be the main geochemical source of trace elements in soils and plants, which may cause contamination of the local environmental ecosystems. Three ways by which soils have been contaminated by these trace elements derived from bone coal are proposed in this paper. Radishes and beans have the ability to accumulate Mo and Se from soils. There is no obvious difference in concentrations of Cu, Cr and F in each plant from the two areas.  相似文献   

9.
A comparative study related to the concentrations of trace elements especially those of environmental concern, occurring in regular and reclaimed soils on abandoned coal mines as well as on their respective wheat crops has been undertaken in the vicinity of Ptolemais–Amynteon, Greece. The aim was to assess the impact of land reclamation on the crops.The results of elemental analysis show that the concentration of As is 1.5 to 1.7 times higher in the regular soils than in the reclaimed ones, similarly Co is 2.4 to 2.6 times higher, Cr is 1.7 to 2.8 times higher, Ni is 1.9 to3.1 times higher, Pb is 0.8 to 4.6 times higher, and Hg is equal to or 1.7 times higher. Cu, Cd and Se have the same concentration in both kind of soils and Mo and U are 1.7 to 2.0 times lower in the regular soils as compared to the reclaimed soils. Nevertheless, all concentrations are within the reported range for regular soils.Moreover, the concentrations of the studied elements in wheat grains harvested from both types of soils are approximately the same. The reason for the uniform uptake of elements by the plants is the very low solubility of the elements in the soil solutions. This is attributed to the high soil pH and the nature of the occurrence or bonding of the elements in soil minerals.  相似文献   

10.
黑河流域不同生境植物水分来源及环境指示意义   总被引:6,自引:0,他引:6  
曾巧  马剑英 《冰川冻土》2013,35(1):148-155
选择黑河流域三种典型生境类型(绿洲、 绿洲-荒漠过渡带、 荒漠), 通过分析其不同植物木质部水分与其土壤潜在水源稳定氢(δD)和氧(δ18O)同位素组成, 研究了不同生境中植物的水分来源情况. 结果表明: 荒漠生境中植物倾向于利用深层土壤水(>160 cm); 绿洲-荒漠过渡带中沙蒿和沙拐枣主要利用20~40 cm层位的土壤水, 梭梭可能的利用层位是60~80 cm, 花棒可能利用100 cm左右的水分, 柽柳则利用120 cm以下的土壤水; 绿洲植物吸水层位多集中在0~100 cm, 其中, 假苇拂子茅可能水源是20 cm左右的土壤水, 玉米则为20~40 cm, 柽柳和杨树的吸水层位为60 cm左右, 棉花则是利用80 cm左右的水分. 稳定性同位素估测各生境植物水分来源的结果与其土壤含水量的结果一致, 同一生境中吸水层位相似的植物间存在水分来源竞争. 不同生境中植物水分来源的深浅存在递变, 从深到浅表现为荒漠>过渡带>绿洲, 不同生境同种植物也存在同样变化, 说明植物稳定氢氧同位素组成可以用来指示干旱区绿洲化、 荒漠化过程.  相似文献   

11.
The generation of electricity has been identified as one of the main pollutant activities, and some studies have established an increment of heavy metals in soil in the areas surrounding these plants. The aim of this study was to evaluate the soil concentrations of heavy metals in the zone surrounding a thermoelectric power in Mexico. Thirty-two top soil samples (0–5 cm) were collected; additionally, four depth profiles (1 m) were investigated. Median concentrations for chromium, vanadium, nickel, mercury, and cadmium were 47, 47, 73, 0.02, and 0.01 mg/kg, respectively. Higher Cr, Ni, and V concentrations were observed in the soil depth profiles located closer to the plant in comparison with the concentrations found in the soil depth profile located further away from the plant; these results may indicate a possible accumulation of these metals. The geoaccumulation index results indicated that most of the sites were in the classifications of unpolluted and unpolluted to moderately polluted (classes 1 and 2). The statistical results showed that downwind of the plant in relation to the prevailing winds, there was a strong correlation between soil concentrations of chromium, copper, nickel, and vanadium. Based on the results of this study, it can be concluded that the use of fuel oil at the thermoelectric plant contributed to the accumulation of vanadium and nickel in the soil of the surrounding areas, as well as chromium and copper.  相似文献   

12.
微量元素在湖积物、土壤的垂向分布与稻谷中的分配   总被引:22,自引:7,他引:15       下载免费PDF全文
报道了“江苏省国土生态地球化学调查”项目有关湖积物、土壤柱微量元素垂向分布及稻谷样元素分配研究的初步成果。通过对有关样品元素含量的分析对比,指出洪泽湖沉积柱元素垂向分布与其动荡的沉积环境关系密切、太湖局部沉积物在其目前20cm以上深度存在人为重金属污染,这二湖沉积物中其氮与总有机碳含量呈显著正相关;认为城市化可使当地土壤环境受重金属等污染的深度显著加大、城市土壤环境受人为活动的影响要显著高于农村;发现Mo易富集于稻米、重金属与营养元素易富集于稻皮、各元素在米-谷间的分配关系不确定。  相似文献   

13.
Spatial distribution patterns of As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, U and Zn were determined in topsoil samples collected after 40 years of chemical remediation conducted in the inoperative “Staszic” pyrite–uranium mine in the Holy Cross Mountains, south-central Poland. Soil samples were taken from 58 sites using a systematic random sampling design. Selected samples were subjected to an X-ray diffractometry analysis on bulk soils and separated clay fractions. Hematite, goethite and gypsum are common mineral phases in soil samples. Technogenic soils developed on reclaimed mine spoils show uniform spatial element distribution patterns and additionally a distinct enrichment in As, Pb, Mn, U and Zn. Mineral and chemical composition of soils vs. rocks points to the lithogenic source of the determined elements. The results of chemical analysis have been used for evaluation of geochemical background of trace elements in the study area with the iterative 2σ-technique. This investigation shows that using mean crustal element concentrations (Clarke values) as proxies of threshold values in soils are not useful for determination of strongly positive geochemical anomalies. A modified enrichment factor, i.e. a local enrichment factor, is proposed for identification of sites where soils are contaminated.  相似文献   

14.
Polycyclic aromatic hydrocarbon (PAH) and nitrated PAH (NPAH) products are toxic. Thus, determination of their concentrations is of great interest to researchers of soil and water pollution control. In this work, soil samples, surface water samples, and groundwater samples were collected, and the concentrations of 16 priority PAHs and 15 NPAHs were determined using an HPLC-ultraviolet detector. Results showed that the total PAH concentrations ranged within 489.69–1,670.11 ng/g (average = 905.89 ng/g) in soil samples, 4.00–23.4 μg/l (average = 9.84 μg/l) in surface water samples, and 2.14–22.3 μg/l (average = 8.37 μg/l) in groundwater samples. The NPAH concentrations were one to two orders of magnitude lower than the PAH concentrations and ranged within 22.72–128.70 ng/g (average = 63.88 ng/g) in soil samples. 2-Nitropyrene and 6-nitrochrysene were the most abundant compounds, accounting for about 14.3 and 26.5 %, respectively. Source analysis revealed that most PAHs originated from coal combustion around the study area, whereas NPAH studies suggested that the primary emission of gasoline engines and daytime OH reactions were the dominant sources of these compounds.  相似文献   

15.
Concentrations of trace elements such as As, Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr were studied in soils to understand metal contamination due to agriculture and geogenic activities in Chinnaeru River Basin, Nalgonda District, India. This area is affected by the geogenic fluoride contamination. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Forty-four soil samples were collected from the agricultural field from the study area from top 10–50 cm layer of soil. Soil samples were analyzed for trace elements using X-ray fluorescence spectrometer. Data revealed that soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Ba (370–1,710 mg/kg), Cr (8.7–543 mg/kg), Cu (7.7–96.6 mg/kg), Ni (5.4–168 mg/kg), Rb (29.6–223 mg/kg), Sr (134–438 mg/kg), Zr (141.2–8,232 mg/kg) and Zn (29–478 mg/kg). The concentration of other elements was similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high EFs for some trace elements obtained in soil samples show that there is a considerable heavy metal pollution, which could be due to excessive use of fertilizers and pesticides used for agricultural or may be due to natural geogenic processes in the area. Comparative study has been made with other soil-polluted heavy metal areas and its mobility in soil and groundwater has been discussed. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

16.
南京地区土壤元素的人为活动环境富集系数研究   总被引:27,自引:9,他引:18       下载免费PDF全文
南京周边地区开展多目标地球化学调查获取了“双层土壤”各元素的含量,表层土壤的元素含量与其深层土壤元素含量之比值即称之为土壤中该元素的人为话动环境富集系数(简称环境富集系数),笔者介绍了有关环境富集系数的计算方法。通过对比研究区各元素环境富集系数分布特征,发现本区表层土壤中Si、Ti、La、Ce、Y、Sc、Zr、Th、U、W等元素与其自然土壤环境的含量相近,S、N、P、Hg、Pb、Cl、Br、Se等元素及有机碳呈现了显著的人为环境富集,I、Fe、Mg、Mn、Ca、Al、K等元素出现了地表贫化。最后探讨了深入开展土壤中元素环境富集系数研究的相关问题,并提出了建议。  相似文献   

17.
The concentrations and spatial distribution of nine potentially harmful elements (PHEs), namely Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn, and their relation to soil properties were investigated in thirty soil profiles (0–50 cm depth) sampled around the largest Serbian coal-fired power plant (CFPP) “Nikola Tesla A.” Soil properties were determined following standard procedures, and total contents of PHEs were analyzed by atomic absorption spectrometer. Concentrations of Cd, Co, Fe, Mn, Pb and Zn were the highest in soil profiles sampled 1 km away from the CFPP, concentrations of Ni and Cu gradually increased up to 4 km, and the highest Cr concentrations were measured in samples taken 6 km away from the CFPP. The highest concentration of PHEs analyzed, except Mn, corresponded with predominant wind directions. Depth did not show significant impact on distribution of any PHEs investigated. Among soil properties, the total organic carbon showed the closest relationship with the PHEs. Data were processed by a principal component analysis which enabled distinguishing anthropogenic from natural influences on soil properties and PHE contents. Although the impact of CFPP operations is obvious, assets of principal component analysis did not allow clear distinction of CFPP’s contribution from parent material in enrichment of PHE contents in the soil in the study area.  相似文献   

18.
Surface coal mining inevitably deforests the land, reduces carbon (C) pool and generates different land covers. To re-establish the ecosystem C pool, post-mining lands are often afforested with fast-growing trees. A field study was conducted in the 5-year-old unreclaimed dump and reclaimed coal mine dump to assess the changes in soil CO2 flux and compared with the reference forest site. Changes in soil organic carbon (SOC) and total nitrogen stocks were estimated in post-mining land. Soil CO2 flux was measured using close dynamic chamber method, and the influence of environmental variables on soil CO2 flux was determined. Woody biomass C and SOC stocks of the reference forest site were threefold higher than that of 5-year-old reclaimed site. The mean soil CO2 flux was highest in 5-year-old reclaimed dump (2.37 μmol CO2 m?2 s?1) and lowest in unreclaimed dump (0.21 μmol CO2 m?2 s?1). Soil CO2 flux was highly influenced by environmental variables, where soil temperature positively influenced the soil CO2 flux, while soil moisture, relative humidity and surface CO2 concentration negatively influenced the soil CO2 flux. Change in soil CO2 flux under different land cover depends on plant and soil characteristics and environmental variables. The study concluded that assessment of soil CO2 flux in post-mining land is important to estimate the potential of afforestation to combat increased emission of soil CO2 at regional and global scale.  相似文献   

19.
Environmental degradation resulting from desertification often accelerates biodiversity loss and alters carbon (C) and nitrogen (N) stocks within grassland ecosystem. In order to evaluate the effect of desertification on plant diversity and carbon (C) and nitrogen (N) stocks, species compositions and C and N contents in plants and soil were investigated along five regions with different degrees of desertification in the northeastern margin of the Qinghai-Tibetan Plateau (control, light, moderate, severe and very severe stages). The study showed: (1) species composition and richness changed significantly with the development of grassland desertification; (2) the aboveground biomass C and N contents in the control were 101.60 and 4.03 g m?2, respectively. Compared to the control, the aboveground tissue C and N contents significantly decreased from light, moderate, severe to very severe stages. (3) The root C and N contents in the control in 0–40 cm depth are 1,372.83 and 31.49 g m?2, respectively, while the root C and N contents in 0–40 cm were also declining from the control, light, moderate, severe to very severe stages. (4) Compared to the plant, the soil made a greater contribution for C and N distribution, in which the soil organic C and total N contents in 0–40 cm depth in the control are 20,386.70 and 3,587.89 g m?2, respectively. At the same time, soil organic C and N contents also decreased significantly from the control to very severe stages. These results suggest that grassland desertification not only alters species compositions and leads to the loss of plant diversity, but also results in greater loss of organic C and N in alpine meadow, in which there is a negative effect on reducing greenhouse gas emission.  相似文献   

20.
Urban soils, although crucial to defining urban vegetation types and strengthening the resilience of urban ecosystems, can be severely modified by human activities. Yet understanding of these modifications and their implications for soil properties is limited. This study examined the vertical and spatial variability of selected soil physicochemical properties (pH, SOM, OC, TN, and bulk density) in Kumasi, Ghana, using a stratified random sampling technique. Soil samples were collected at three depths (0–15, 15–30, and 30–60 cm) from 161 plots in eight green space types within two urban zones. Mean topsoil pH ranged between 5.0 in the natural forest and 6.5 in home gardens. Mean bulk density, nitrogen, and carbon concentrations differed among green space types and depths (p?<?0.0001). Soil nitrogen and carbon concentrations in the 0–15 cm depth were two times greater than those of the 30–60 cm depth. Soil pH and organic matter concentrations were higher in the core urban soils than in the peri-urban while the reverse was true for total soil N and bulk density. Canonical discriminant analysis showed considerable separation of green space types based on the soil physicochemical properties. Higher total nitrogen and C:N ratios separated natural forest and cemetery from the other UGS types, whereas higher pH and bulk densities separated plantations and home gardens from the rest of the UGS types. Furthermore, the subsoil layers were laden with undecomposed cloths, plastics, concrete, and metal parts which can obstruct root growth and water movement. Results generally demonstrate considerable variability in soil properties among urban green spaces and highlight the need for a better understanding of these patterns to ensure continued support for plant growth, green space sustenance and maintenance, and the ecosystem services derived from them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号