首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research is focused on evaluating heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn) uptake and removal by Eleocharis ovata, Cyperus manimae, Typha dominguensis, and Pteridium aquilinum in a natural wetland impacted by mining activities. We analyzed heavy metals content and distribution in native plants, soils, and water of a semipermanent natural wetland in Taxco de Alarcón, Guerrero, and we also determined the physicochemical characteristics of the water. Translocation factor (TF) and bioconcentration factor (BCF) were evaluated. Results showed that physical and chemical conditions are favorable for plants development. Correlation analysis showed a good and positive relation (0.95) between Cu and Pb in soils and plants. In the analyzed matrices: Zn (0.62–2.20 mg/L) exceeded the permissible limits in water, high concentrations of Pb and Zn (26.57–525.67 and 266.67–983.33 mg/kg, respectively) were detected in the studied soils, and Pb exceeded the normal range for E. ovata and P. aquilinum in the analyzed plants. Uptake of heavy metals in the tissues of different species was found in the following order: root > leaf. Data of TF and BCF showed that E. ovata is a tolerant plant with respect to heavy metals exposure since TF value was greater than 1. This study showed that E. ovata could be considered as a bioaccumulator of heavy metals in contaminated soils.  相似文献   

2.
This study investigated the status and distribution patterns of selected heavy metals in roadside soils along Irbid-North Shooneh Highway, Jordan. This highway has experienced a growing number of vehicles that are likely to influence the levels of heavy metals in the surrounding agricultural lands. The average concentrations of Cr, Co, Cd, Cu, Pb, Zn, and Ni were 16.0, 36.0, 11.0, 4.0, 79.0, 122.0, and 60.0 mg/kg, respectively. Cd, Pb, and Co showed average levels that are higher than the average world soil background values. Elevated levels of heavy metals were measured in surface soil layer which decreased with depth, and with distance from the roadway. The contamination factor (CF), pollution load index (PLI), single ecological risk (Ei), potential ecological risk index (PERI), and geo-accumulation index (Igeo) generally indicated that the roadside soils are contaminated with Cd, Pb, and Ni. Heavy metals in soils are of geogenic and anthropogenic origins. Weathering of parent rocks in Wadi Al-Arab catchment is the primary natural source, whereas agrochemicals, vehicle exhausts, degradation of surface wear and paint of vehicles, vehicle wear debris of tire, and brake lining are the main anthropogenic sources of heavy metals.  相似文献   

3.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

4.
The pollution of soil with heavy metals has direct or indirect adverse effect on human health. The present work was conducted to identify all the expected sources and sinks for heavy metals by applying mass balance model to identify the retention rate of metals by soils in Yaakob village, south Sohag Governorate, Egypt. The studied inputs (sources) include P-fertilizers, irrigation water and dustfall, while the main outputs (sinks) are drainage water and harvested plants. The measurements indicate that soil, clover, dustfall and P-fertilizers contain considerable concentration of Cd, Cr, Co, Cu and Pb. The mass balance measurements indicate that the accumulation rate of Cd, Cr and Co in soil was 5.4, 54.6 and 16.3 g ha?1 year?1, respectively. However, depletion trend of Pb and Cu was about 1.4 and 5.2 g ha?1 year?1, respectively. The main source of Cd, Pb, Cr and Co in the study area is P-fertilizers with input flux 14.9, 89.9, 198.6 and 18.5 g ha?1 year?1, while Cu source was dustfall with 19.33 g ha?1 year?1. The index of geoaccumulation calculations indicates different degrees of contamination with Cd, Cr, Co and Cu. On the other hand, the main sink for the studied heavy metals was the Egyptian clover (Trifolium alexandrinum) which can be considered a good bioaccumulator of heavy metals.  相似文献   

5.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

6.
With the increasing industrialization, heavy metals concentration in soils has greatly increased. Phytoremediation is a low-cost, non-intrusive and aesthetically harmonious technology that uses plants to remediate contaminated sites by heavy metals. The aim of the study was to determine Cd, Pb and Zn concentration in the biomass of plant species growing on a multi-metal-contaminated site of lead smelter processing, to assess the workability of using these plants for phytoremediation purposes and highlight possible damage in morphological leaf changes. Two plant species, i.e., Ipomoea asarifolia and Urochloa decumbens and the associated soil samples were collected and analyzed Cd, Pb and Zn concentrations and then calculating the bioconcentration factor and translocation factor parameters for each element. Leaves and roots samples were observed by light microscopy. Metal concentrations varied greatly and majorly depend on site sampled, plant species and tissue. Cd, Pb and Zn in tissue ranged from 0 to 102.48, 0 to 381.04 and 12.84 to 295.02 mg Kg?1. However, none of the plant showed potential for hyperaccumulation. Both plants showed bioaccumulation factor more than one, where it was 7.66 and 6.82 for Pb and Zn in U. decumbens, respectively. Translocation factor was calculated below one for both plants and all metals. Morphological studies revealed development of adaptive features that strengthen the U. decumbens to grow in contaminated soil. Our study suggests that I. asarifolia and U. decumbens have potential for phytostabilization at multi-metal-contaminated site.  相似文献   

7.
洪涛  谢运球  赵一  杨利超 《中国岩溶》2016,35(4):439-445
为探讨硫铁矿冶炼区不同土地利用方式和土壤类型对重金属元素迁移的影响,采集了毕节市林口废弃硫铁矿冶炼厂内耕地砂壤土及附近林地石灰土表层和深层样共40组。室内测试土壤理化指标Pb、Zn、Cd全量和有效态含量,并对重金属元素含量的水平和垂直分布特征及重金属元素含量的相关性进行了讨论。结果表明:土壤中Pb和Zn的含量均符合土壤环境质量二级标准值,耕地表层土壤Cd含量是贵州省农业土壤背景值的7倍。土壤Cd有效态含量占全量的比值最大,而Pb和Zn有效态含量占全量的比值差别较小。耕地砂壤土Zn和Cd的全量随剖面深度的增加表现为先增大后减小,Pb呈减少的趋势;Pb和Zn的有效态含量随剖面深度的增加而减少,Cd有效态含量呈波动变化。林地石灰土中Pb、Zn、Cd的全量和有效态含量均随剖面深度的增加而减少,且Pb、Zn、Cd全量之间及全量与有效态含量之间都具有显著的正相关关系,而在耕地中各元素的相关性不明显。土壤频繁的扰动和偏酸性的环境有利于重金属垂向迁移。   相似文献   

8.
A study of agricultural lands around an abandoned Pb–Zn mine in a karst region was undertaken to (1) assess the distribution of heavy metals in the agricultural environment, in both dry land and paddy field; (2) discriminate between natural and anthropogenic contributions; and (3) identify possible sources of any pollution discovered. Ninety-two samples of cultivated soils were collected around the mine and analyzed for eight heavy metals, pH, fluoride (F?), cation exchange capacity, organic matter, and grain size. The eight heavy metals included Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg. The average concentrations (mg/kg) obtained were as follows: Cd 16.76 ± 24.49, Cr 151.5 ± 18.24, Cu 54.28 ± 18.99, Ni 57.5 ± 14.43, Pb 2,576.2 ± 1,096, Zn 548.7 ± 4,112, As 29.1 ± 6.36, and Hg 1.586 ± 1.46. In a site where no impact from mining activities was detected, the mean and median of Cd, Cu, Ni, Pb, Zn, As, and Hg concentrations in investigated topsoils were higher than the mean and median of heavy metal concentrations in reference soils. An ensemble of basic and multivariate statistical analyses was performed to reduce the multidimensional space of variables and samples. Two main sets of heavy metals were revealed as indicators of natural and anthropogenic influences. The results of principal component analysis (PCA) and categorical PCA demonstrated that Cd, Cu, Pb, Zn, and Hg are indicators of anthropogenic pollution, whereas Cr, As and Ni concentrations are mainly associated with natural sources in the environment. The contamination from Pb–Zn mining operations, coupled with the special karst environment, was a key contributing factor to the spatial distribution of the eight heavy metals in the surrounding soil. The values of heavy metals in the soil samples suggested the necessity of conducting a rigorous assessment of the health and environmental risks posed by these residues and taking suitable remedial action as necessary.  相似文献   

9.
The urban environment is of growing concern as its continued population increase in China. Due to the urbanization and industrialization, heavy metals have been continuously discharged into the soil recently, and creating the anthropogenic contamination. This study investigated heavy metals contamination in urban and suburban soils in Zhangzhou City, Fujian, China. Multivariate analysis and geographical information system technology were employed in source identification and contamination assessment of heavy metals in the city soils. The survey results indicated that the urban soils were contaminated by heavy metals, especially by Hg, Cd and Pb. The multivariate analysis demonstrated that the distribution of Cu, Zn, Cr and Ni was controlled by pedogenesis, Cd and Pb had been disturbed by industrialization in some urban locations, and Hg was mainly influenced by the hot-spring in some urban park sites. The distribution of heavy metals and soil pollution index suggested the soils of Zhangzhou City have been affected by human activities.  相似文献   

10.
In this study, data on several metals (Cd, Pb, Zn and Cu) in soil and isopod Porcellio laevis taken at 21 sites from the most important industrial areas in Tunisia (Bizerte, Nabeul, Zaghouan, Sfax and Gabes) were presented. Heavy metal concentrations in both soil samples and isopods were determined using atomic absorption spectrometry. Soil contamination was estimated using the contamination factor (CF). On the other hand, the bioaccumulation factor (BAF) was determined to estimate metal accumulation in isopods. The CF values show that the level of contamination varies between sampled soils, which may be due to the source of pollution at each site. The BAF values allow defining the order of accumulation in P. laevis which was classified for the majority of the sampled sites as a macro-concentrator of Cu and Zn and a deconcentrator of Cd with some exceptions. A principal component analysis (PCA) was conducted between soil properties (pH, OM and CaCO3) and metal concentrations in soils. Through PCA, we obtained four groups in which soils were distinguished by their physicochemical properties and their metal concentrations. Moreover, linear multiple regressions with a downward stepwise procedure were conducted to test the relationships between the physicochemical parameters and metal concentrations in both soils and isopods. Thus, positive correlations (0.78 < R 2 < 0.99) were obtained for Pb considering dataset from the groups 1, 2 and for Zn with data of groups 2 and 3. Finally, results showed that P. laevis could be used as a bio-indicator for monitoring and reducing the impact of pollution in terrestrial ecosystems.  相似文献   

11.
In the present study, bulk contents of Ni, Zn, Cu, Pb and Mn in urban area of Tehran city are determined. Subsequently, the chemical bonds of metals with various soil fractions are brought out. Chemical partitioning studies revealed that various percentile of Ni, Zn, Cu, Pb and Mn is found in anthropogenic portion of soils. Zinc, Ni, Cu, Pb and Mn fall within “low pollution” class in accordance with index of pollution (I POLL). The trend of anthropogenic share of studied metals in soils of Tehran is Zn (55 %) > Cu (31 %) > Ni and Pb (30 %) > Mn (12 %). The overall potential of studied plants in metal removal from soil is Salvia > Viola > Portulaca. It should be pointed out that roots have higher potential in metal removal from soil when compared with leaf and stem. Lithogenic portion of metals remains intact before and after pot analysis. Thus, phytoremediation is highly dependent on the chemical bonds of metals. Present study showed that metal contents of loosely bonded ions, sulfide bonds and organometallic bonds are reduced after 90 days of plant cultivation. The overall removal trend of studied metals is Zn (16 %) > Cu (14 %) > Ni (11 %) > Pb (7 %) > Mn (6 %). The obtained results show that the anthropogenic portion of metals is reduced after the phytoremediation practice. For instance, the initial anthropogenic portion of Zn (55 %) is changed to 39 % showing an overall reduction of about 16 %. The anthropogenic portions of Cu, Ni, Pb and Mn are also reduced by 14, 11, 7 and 6 %, respectively.  相似文献   

12.
Heavy metals are constantly emitted into the environment and pose a major threat to human health, particularly in urban areas. The threat is linked to the presence of Cd, Cr, Cu, Ni, Pb, and Zn in street dust, which consists of mineral and organic particles originating from the soil, industrial emitters, motor vehicles, and fuel consumption. The study objective was to determine the level of street dust contamination with trace metals in Lublin and to indicate their potential sources of origin. The analyses were carried out with an energy-dispersive X-ray fluorescence spectrometer. The sampling sites (49) were located within the city streets characterised by varying intensity of motor traffic. The following mean content values and their variation (SD) were determined: Cd: 5.1?±?1.7 mg kg?1, Cr: 86.4?±?23.3 mg kg?1, Cu: 81.6?±?69.2 mg kg?1, Ni: 16.5?±?3.9 mg kg?1, Pb: 44.1?±?16.4 mg kg?1, and Zn: 241.1?±?94.6 mg kg?1. The level of pollution was assessed with several widely used geochemical indices (geoaccumulation index, enrichment factor, pollution index, index of ecological risk, and potential ecological risk index). For most of the indices, the mean (median) values are arranged in the following manner: Zn?>?Cu(or Cd)?>?Pb?>?Ni?>?Cr. In general, street dust in Lublin does not show pollution with Cr, Ni, and Pb. Igeo and EF indices show moderate levels for Cu, Cd, and Zn; their presence in street dust is linked with anthropogenic factors (motor traffic). A significant threat is posed by Cd, and more than half of the samples show considerable pollution with cadmium (median for the index of ecological risk: 151). The spatial pattern of indices and the results of statistical analyses (CA, PCA) indicate three groups of elements: (1) Cr and Ni: natural origin; (2) Pb: mixed origin; and (3) Cd, Cu, and Zn: anthropogenic origin (mainly motor vehicle traffic). Higher content values for metals of anthropogenic origin in street dust indicate that it is a source of pollution of soil and air in the city.  相似文献   

13.
小秦岭金矿区土壤重金属生物有效性与影响因素   总被引:1,自引:0,他引:1  
张开军  魏迎春  徐友宁 《地质通报》2014,33(8):1182-1187
土壤中重金属生物有效性与影响因素分析是土壤重金属风险管控的关键问题。通过实地调查、现场采样、实验测试、综合分析等方法,分析了研究区100km2内Hg、Pb、Cd、Cr、As、Cu、Zn七种重金属元素的有效态含量特征,研究了这些重金属有效态含量之间、有效态含量与全量、有效态与土壤pH、有机质含量、粒度等基本理化参数之间的相关性,分析了重金属污染来源。结果表明,土壤中Hg、Pb、Cd、Cr、As、Cu、Zn七种重金属有效态的平均含量分别为2.29mg/kg、594mg/kg、2.52mg/kg、6.30mg/kg、2.16mg/kg、48.14mg/kg、50.21mg/kg,其变异系数大小为:HgPbCuZnCdAsCr。Hg的变异系数最大,是由于金矿选矿活动采用混汞法提金排放的尾矿堆(库)分布不均。Hg、Pb、Cd、Cu、Zn有效态量与全量之间均存在显著的相关性;土壤有机质与重金属有效态之间存在显著的相关性;土壤pH与有效态重金属之间存在显著的负相关性;土壤粒度对重金属有效态的累积影响不明显。  相似文献   

14.
研究雄安地区土壤重金属和砷元素空间分布特征及其来源,对于支撑新区土地资源和环境管理具有重要意义。基于雄安新区土壤环境调查,运用地统计学方法和ArcGIS 技术分析模拟了土壤中As、Hg、Cd、Cu、Pb、Zn、Ni、Cr等8种元素空间分布特征,综合运用空间分析、多元统计学方法和正定因子矩阵模型解析这些元素的主要来源。结果表明:(1)区内土壤质量总体良好,4.35 %的土壤样品Cd和Cu含量超过农用地土壤污染风险筛选值,但均低于农用地土壤污染风险管控值;与河北省背景值相比,Cd、Cu、Pb、Zn和Hg存在不同程度中度和显著富集。(2)As、Cd、Cu、Pb、Zn、Ni、Cr含量呈现出由北部向南部逐渐增高的趋势,高值区主要分布在新区西南部;Hg元素分布分散,高值区主要分布在城镇及工业企业周边。(3)不同土地利用类型土壤剖面重金属和砷元素垂向分布受pH值、有机碳和铁铝氧化物等理化性质影响显著。(4)研究区土壤重金属和砷元素富集受人类活动影响明显,人为来源贡献率达67.12 %,Hg元素主要来源于人为排放的大气沉降富集,As元素富集受到废渣堆放和利用的影响,Cd、Cu、Pb和Zn元素富集受工业生产、污水灌溉以及尾气排放等活动影响。研究成果可为雄安新区合理制定土地资源开发利用和生态保护措施提供技术支撑。  相似文献   

15.
Health risks of heavy metals in vegetables irrigated with sewage water were investigated in the present study. The findings indicated a massive accumulation of heavy metals in soil and vegetables collected from Dera Ismail khan, Pakistan. The concentration levels of heavy metal in vegetables grown on soil irrigated with untreated sewage water were significantly higher at (P ≤ 0.001) than in vegetables grown on fresh-water-irrigated soil and proceeded the recommended limits of World health organization. Moreover, the findings also indicated that the adults and children consuming such vegetables ingested a large proportion of the selected toxic metals. Health risk index was greater than one for Pb and Cd in all the selected vegetables and was greater than one for Ni in three vegetables like Spinacia oleracea, Benincasa fistulosa and Lactuca sativa. Health risk assessment would be a useful tool for information regarding any threats of heavy metals contamination in vegetables.  相似文献   

16.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

17.
江苏省土壤重金属分布特征与污染源初步研究   总被引:4,自引:2,他引:2  
以24 186个表层土壤(0~20 cm)和6 127个深层土壤(150~200 cm)样品之Cd、Hg、Pb、As等含量数据为基础,研究了江苏全省土壤环境的重金属分布与主要污染特征.结果表明.全省自然土壤环境与人为活动土壤环境的重金属元素分布都不均匀,但人为活动土壤环境中的不均衡程度远高于自然土壤环境:全省农田中有1.02%的土壤受到Cd、Hg、Pb等8种重金属的严重污染,苏州市、无锡市土壤环境被重金属污染的程度相对严重;工业化、城市化进程中的人为活动及自然地质作用都是引起江苏局部土壤重金属污染的重要原因,自然成因的重金属污染土壤多呈面状、多元素、低强度、双层污染等特点,从而与人为成因的重金属污染土壤有所区别.  相似文献   

18.
In a reconnaissance study, trace amounts of Cd, Cu, Pb, and Zn were determined in “A-zone” soil from 22 locations in the Dayton, Ohio, area. Soil samples were collected at high-volume air monitoring sites in urban, suburban, and rural areas. Measurable amounts of the elements were found in all of the samples. Positive correlations occur between each metal and particulate matter, with correlation coefficients of aboutr=0.70, at the 99% confidence level. Natural background values for the elements were measured in soil from rural areas. Theoretical background values, which are very close to those measured, were calculated from the individual regression equations. Natural background levels do not exceed 1.00 ppm Cd, 15 ppm Cu, 25 ppm Pb, and 55 ppm Zn. The heavy metal contents of most soils in the area exceed background by factors of up to 3.0 for Cd, up to 4.5 for Cu, up to 11 for Pb, and up to 4.5 for Zn. Significant positive correlations among the metals suggest a common source (or sources) for at least some, if not most, of the heavy metals. For the most part, the highest metal values are found in soils near coal-burning plants. Fly ash from a local plant contains substantial amounts of the elements. The high lead values are largely due to vehicular exhaust. However, there is evidence that the metals can also come from the normal deterioration of vehicles. It appears that airborne pollution is an important source of heavy metals in Dayton area soils.  相似文献   

19.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

20.
The aim of this study was to determine the influence of sewage sludge (SLU) amendment on the desorption characteristics of zinc (Zn), lead (Pb), and cadmium (Cd) in contaminated calcareous soils. Three levels of SLU (0, 1, and 3% w/w) were added to the two calcareous contaminated soils. Samples were incubated for 30 days and equilibrated with 0.005 M DTPA for 0.25 to 240 h. The addition of SLU significantly increased the amount of DTPA-extractable Zn in soils. While the amounts of Cd, Pb, dissolved organic carbon (DOC), and pH showed a significant increase only in 3% w/w of SLU, with the exception of Cd desorption in 1% w/w of SLU, kinetics of Zn, Pb, and Cd extraction increased together with an increase in the level of applied SLU. The best models for describing desorption data were explicitly power function and Elovich. The rate constants of Zn and Pb had significant correlations with DTPA-extractable Zn and Pb, DOC and pH, which affect Zn and Pb desorption. Also, the rate constants of Cd had significant correlations with CEC that can be deemed as equivalent to the fact that Cd desorption is controlled by surface adsorption, particularly in the lower sludge application amount. These results can be used for management of sewage sludge application in contaminated calcareous soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号