首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The National Oceanic and Atmospheric Administration (NOAA) Status and Trends Mussel Watch Program sampled the largest oysters in nearly every major US coastal lagoon and estuary in the Gulf of Mexico once during the winter from 1986 to 2010. This contribution examines trends in the principal oyster disease in the Gulf of Mexico, Dermo, caused by Perkinsus marinus, and some related population dynamic characteristics for its host, Crassostrea virginica. During the 1986–2000 period, P. marinus prevalence and infection intensity and oyster population dynamics followed the El Niño-Southern Oscillation (ENSO) cycle, responding to variations in salinity caused by variations in rainfall and freshwater inflow. The ENSO signal in the oyster population effectively ceased circa 2002. Beginning around this time, wintertime P. marinus prevalence and weighted prevalence began a decadal decline, as did the length of the largest oysters and the fraction of these largest animals that were female. The trends in Dermo disease, oyster length, and oyster sex ratio are all consistent with the following hypothesis: increasing temperature during the 2000s resulted in an increase in P. marinus infection intensity sufficient to increase the mortality rate in late summer and fall in the larger animals. This simultaneously reduced Dermo prevalence and infection intensity in the winter at the time of sampling and also resulted in the decline in the length of the largest animals targeted by Mussel Watch. Coincident with the decline in length is the expected decline in the fraction female, such that the percent female in the largest animals dropped to ≤50 % throughout much of the Gulf of Mexico. The decline in length leading to fewer large animals reproducing and the loss of females are predicted to have reduced oyster population reproductive capacity substantially during the 2000s. The early 60 % of the Mussel Watch time series took place during a period of negative Atlantic Multidecadal Oscillation (AMO) indices. The AMO moved into positive territory circa 2000. A positive AMO index is consistent with observed warmer water temperatures, and increased water temperature is consistent with an increase in Dermo-induced mortality.  相似文献   

2.
Aquaculture currently provides half of all fish for human consumption, and this proportion is expected to increase to meet the growing global demand for protein. As aquaculture, including oyster farming, expands, it is increasingly important to understand effects on coastal ecosystems. The broad-scale ecological effects of oyster aquaculture are well documented; however, less is known regarding the influence of oyster aquaculture on sediment bacterial communities. To better understand this relationship, we compared three different oyster farming practices that varied in oyster biomass and proximity of oysters to the sediment. We used high-throughput sequencing and quantitative polymerase chain reaction to examine the effect of oyster farming on sediment bacterial communities. We examined the entire bacterial community and looked specifically at bacteria that support essential estuarine ecosystem services (denitrifiers), as well as bacteria that can be detrimental to human health (members of the Vibrio genus). We found that oyster biomass increased Vibrio richness and sediment carbon content, which influenced bacterial community composition. When compared to reference sites, the overall abundance of bacteria was increased by the bottom planting method, but the associated increases in denitrifiers and Vibrio were not significant. We were unable to detect V. parahaemolyticus, V. vulnificus, or V. cholera, the three most common Vibrio pathogens, in any sample, suggesting that oyster farming did not enhance these potential human pathogens in sediments at the time of sampling. These results highlight how differences in oyster farming practice can affect sediment bacterial communities, and the ecosystem services they provide.  相似文献   

3.
Frequent blooms of the dinoflagellate Alexandrium catenella in southern Chile encouraged undertaking the present study which uses the oyster Ostrea chilensis as a model for evaluating the feeding, growth, lipid storage and mortality responses to diets containing paralytic shellfish poisoning (PSP) produced by A. catenella. Medium-term (30 days) physiological responses of two groups of juvenile oysters were measured every 10 days. Five replicates were exposed to diets containing A. catenella and other five replicates were fed with a diet containing the non-toxic algae Isochrysis galbana. Diets were continuously supplied at a concentration of 2 mg L?1, in which the feeding and metabolic activity was measured, and the scope for growth calculated. Lipids storage, actual growth and mortality were also measured every 10 days. The results showed that the toxic diet has dramatic negative effects on feeding and metabolism of the juvenile individuals of O. chilensis, with high reduction of the lipid storage and growth. Mortality was also increased in individuals fed with the contaminated diet. This study supports the conclusion that the toxic dinoflagellate A. catenella restricts the energy acquisition in the juvenile O. chilensis, an important fishery and aquaculture resource in southern Chile.  相似文献   

4.
The native Olympia oyster, Ostrea lurida, was once abundant in many US Pacific Northwest (PNW) estuaries, but was decimated by human activity in the late nineteenth early to twentieth centuries. Having been the subject of only few modern, detailed studies, a dearth of basic physiological information surrounded O. lurida and how it compared to the now dominant, non-native Pacific oyster, Crassostrea gigas. Utilizing laboratory and in situ studies in Yaquina Bay, OR, we explored the clearance rates of both species across a wide range of conditions. Pacific oysters not only had greater size-specific clearance rates than Olympia oysters, but also had a lower optimum temperature. Clearance rates for both species were reduced at lower salinity, at lower organic content, and at higher turbidity. Clearance rate models were constructed for each species using three approaches: (1) a single mechanistic model that incorporated feeding response functions of each species to the effects of temperature, salinity, turbidity, and seston organic content based on laboratory studies; (2) another additive model in which the number and type of response functions from laboratory studies were allowed to vary; and (3) a statistical model that utilized environmental data collected during in situ feeding trials. Clearance rate models that correlated feeding activity with in situ environmental data were found to often better predict oyster clearance rates (based on Adj R 2) for both species in Yaquina Bay, OR, than mechanistic, additive models based on laboratory feeding response functions; however, in situ correlative models varied in accuracy by species and season. This work represents important first steps towards better understanding the physiological ecology of the native Olympia oyster and how it differs from introduced and now dominant Pacific oyster.  相似文献   

5.
The eastern oyster (Crassostrea virginica) is affected by two protozoan parasites, Perkinsus marinus which causes Dermo disease and Haplosporidium nelsoni which causes MSX (Multinucleated Sphere Unknown) disease. Both diseases are largely controlled by water temperature and salinity and thus are potentially sensitive to climate variations resulting from the El Niño-Southern Oscillation (ENSO), which influences climate along the Gulf of Mexico coast, and the North Atlantic Oscillation (NAO), which influences climate along the Atlantic coast of the United States. In this study, a 10-year time series of temperature and salinity and P. marinus infection intensity for a site in Louisiana on the Gulf of Mexico coast and a 52-year time series of air temperature and freshwater inflow and oyster mortality from Delaware Bay on the Atlantic coast of the United States were analyzed to determine patterns in disease and disease-induced mortality in C. virginica populations that resulted from ENSO and NAO climate variations. Wavelet analysis was used to decompose the environmental, disease infection intensity and oyster mortality time series into a time–frequency space to determine the dominant modes of variability and the time variability of the modes. For the Louisiana site, salinity and Dermo disease infection intensity are correlated at a periodicity of 4 years, which corresponds to ENSO. The influence of ENSO on Dermo disease along the Gulf of Mexico is through its effect on salinity, with high salinity, which occurs during the La Niña phase of ENSO at this location, favoring parasite proliferation. For the Delaware Bay site, the primary correlation was between temperature and oyster mortality, with a periodicity of 8 years, which corresponds to the NAO. Warmer temperatures, which occur during the positive phase of the NAO, favor the parasites causing increased oyster mortality. Thus, disease prevalence and intensity in C. virginica populations along the Gulf of Mexico coast is primarily regulated by salinity, whereas temperature regulates the disease process along the United States east coast. These results show that the response of an organism to climate variability in a region is not indicative of the response that will occur over the entire range of a particular species. This has important implications for management of marine resources, especially those that are commercially harvested.  相似文献   

6.
Both abiotic and biotic factors govern distributions of estuarine vegetation, and experiments can reveal effects of these drivers under current and future conditions. In upper San Francisco Estuary (SFE), increased salinity could result from sea level rise, levee failure, or water management. We used mesocosms to test salinity effects on, as well as competition between, the native Stuckenia pectinata (sago pondweed) and invasive Egeria densa (Brazilian waterweed), species with overlapping distributions at the freshwater transition in SFE. Grown alone at a salinity of 5, E. densa decreased fivefold in biomass relative to the freshwater treatment and decomposed within 3 weeks at higher salinities. In contrast, S. pectinata biomass accumulated greatly (~4× initial) at salinities of 0 and 5, doubled at 10, and was unchanged at 15. When grown together in freshwater, S. pectinata produced 75 % less biomass than in monoculture and significantly more nodal roots (suggesting increased nutrient foraging). At a salinity of 5, a decline in E. densa performance coincided with a doubling of S. pectinata shoot density. Additional experiments on E. densa showed elevated temperature (26 and 30 °C) suppressed growth especially at higher salinities (≥5). We conclude that salinity strongly influences distributions of both species and that competition from E. densa may impose limits on S. pectinata abundance in the fresher reaches of SFE. With a salinity increase of 5, S. pectinata is likely to maintain its current distribution while spreading up-estuary at the expense of E. densa, especially if increased temperature also reduces E. densa biomass.  相似文献   

7.
There is a need for research that advances understanding of flow alterations in contemporary watersheds where natural and anthropogenic interactions can confound mitigation efforts. Event-based flow frequency, timing, magnitude, and rate of change were quantified at five-site nested gauging sites in a representative mixed-land-use watershed of the central USA. Statistically independent storms were paired by site (n = 111 × 5 sites) to test for significant differences in event-based rainfall and flow response variables (n = 17) between gauging sites. Increased frequency of small peak flow events (i.e., 64 more events less than 4.0 m3 s?1) was observed at the rural–urban interface of the watershed. Differences in flow response were apparent during drier periods when small rainfall events resulted in increased flow response at urban sites in the lower reaches. Relationships between rainfall and peak flow were stronger with decreased pasture/crop land use and increased urban land use by approximately 20%. Event-based total rainfall explained 40–68% of the variance in peak flow (p < 0.001). Coefficients of determination (r2) were negatively correlated with pasture/crop land use (r2 = 0.92; p = 0.007; n = 5) and positively correlated with urban land use (r2 = 0.90; p = 0.008; n = 5). Significant differences in flow metrics were observed between rural and urban sites (p < 0.05; n = 111) that were not explained by differences in rainfall variables and drainage area. An urban influence on flow timing was observed using median time lag to peak centroid and time of maximum precipitation to peak flow. Results highlight the need to establish manageable flow targets in rapidly urbanizing mixed-land-use watersheds.  相似文献   

8.
Many subtidal predators undertake regular tidal migrations into intertidal areas in order to access abundant prey. One of the most productive habitats in soft bottom intertidal systems is formed by beds of epibenthic bivalves such as blue mussels (Mytilus edulis) and Pacific oysters (Crassostrea gigas). In the Dutch Wadden Sea, these bivalves might face substantial predation pressure by the shore crab (Carcinus maenas), which increased considerably in numbers during the last 20 years. However, the quantification of this species on bivalve beds is challenging, since most methods common for quantifying animal abundance in marine habitats cannot be used. This study investigated the potential of two methods to quantify the abundance of C. maenas on 14 epibenthic bivalve beds across the Dutch Wadden Sea. The use of the number of crabs migrating from subtidal towards intertidal areas as a proxy of abundance on bivalve beds yielded unreliable results. In contrast, crabs caught with traps on the beds were correlated with the abundance assessed on the surrounding bare flats by beam trawl and therefore provided usable results. The estimates, however, were only reliable for crabs exceeding 35 mm in carapace width (CW). The application of these estimates indicated that crab abundances on bivalve beds were influenced by the biogenic structure. Beds dominated by oysters attracted many large crabs (> 50-mm CW), whereas abundances of medium-sized crabs (35–50-mm CW) showed no relationship to the oyster occurrence. The combination of traps and trawls is capable of quantifying crab abundance on bivalve beds, which offers the possibility to study biotic processes such as predator-prey interactions in these complex structures in more detail.  相似文献   

9.
Management and restoration of wild oyster populations with the ecosystem services they provide require detailed understanding of oyster population dynamics, including temporally and spatially varying growth. Much of the existing literature documenting growth rates for eastern oysters (Crassostrea virginica) reports growth for large, protected, and/or hatchery-spawned oysters. By following growth of wild oysters set on planted clamshells in Delaware Bay, we document early growth (within the first year) of 21 wild oyster cohorts settling over 8 years and assess the importance of interannual variability in temperature and salinity. In general, oysters follow a linear growth trajectory in the first year of life, interspersed by periods of little to no growth in the colder months. Wild oysters settling in the Delaware Bay mid-salinity region reach a size between 27 and 33 mm in their first year and tend to reach greater shell heights at 1 year of age in higher salinity years and at temperatures averaging 23 °C. Multi-year, population-level estimates of wild growth such as these are important for understanding changes in restored and managed oyster populations, and resulting ecosystem services, under naturally variable conditions.  相似文献   

10.
Changes in paleoecology and climate of northern Tunisia during the last 3000 years were reconstructed based on the flood history interpreted from a 172-cm sediment core of Lake Ichkeul (NW Tunisia). Seven wet/dry episodes were identified based on biological (ostracods, foraminifera and mollusks) and biotic indices (H and E index, species richness and abundance). These proxy-based environmental changes were supported by correspondence analyses (CAs) and ecophenotypic responses of the brackish taxon Cyprideis torosa in addition to a grain-size study. Two dry episodes were identified in the lower (EP1) and upper (EP7) parts of the core. These were marked by the dominance of the brackish ostracod C. torosa. High water salinity was indicated by the presence of the brackish ostracod Loxoconcha elliptica, the foraminifer Ammonia sp. and lagoonal mollusks. The occurrence of the freshwater ostracods Ilyocypris sp., Herpetocypris sp., Dawinula stevensoni and Limnocythere inopinata was associated with high species richness and ecophenotypic changes of C. torosa valves indicating lower salinity during three major wet episodes (EP2, EP4, and EP6). The ecological and environmental changes, occurring between 3050 and 50 cal. year BP, are most likely linked to an increase of fluvial inputs which are also recognized in several other Mediterranean lakes. The humid episodes were interrupted by two saline periods (EP3 and EP5) during which freshwater ostracod assemblages declined, diversity indices dropped to the lowest values, and fine-grained sediments became dominant. The top of the core is characterized by the remarkable dominance of L. elliptica coupled with C. torosa, the absence of freshwater ostracods, and the changes in grain-size sediment parameters which are most likely the result of anthropogenic activities. The changes in hydrochemistry and sedimentology were attributed to the deepening of the Bizerte navigation canal, main wadis damming, and Tinja sluice construction which mostly occurred in the XXth century.  相似文献   

11.
The presence of domoic acid (DA) toxin from multiple species of Pseudo-nitzschia is a concern in the highly productive food webs of the northern Gulf of Mexico. We documented the Pseudo-nitzschia presence, abundance, blooms, and toxicity over three years along a transect ~100 km west of the Mississippi River Delta on the continental shelf. Pseudo-nitzschia were present throughout the year and occurred in high abundances (>104 cells l?1) in the early spring months during high Mississippi River (MSR) flow (~20,000 m3 s?1) but were most abundant (>106 cells l?1) when MSR discharge was relatively lower among the spring months. A high particulate toxin production (maximum reaching 13 μg DA l?1) was associated with the high cell abundances and exceeded, by an order of magnitude, prior reports of particulate DA concentrations in Louisiana coastal waters. Differences in Pseudo-nitzschia peak times and its toxicity were correlated mainly with the timing and magnitude of MSR discharge and changes in associated parameters such as nutrient stoichiometry and salinity. A negative relationship between high MSR discharge and Pseudo-nitzschia and particulate DA concentrations was documented. These riverine dynamics have the potential to influence DA contamination in pelagic and benthic food webs in the coastal waters of the northern Gulf of Mexico.  相似文献   

12.
Debris flow density determined by grain composition   总被引:1,自引:1,他引:0  
Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P(D) = KD exp(? D/Dc), with μ and Dc representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. Dc characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ = 1.26μ -0.132 + 0.049Dc0.443, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.  相似文献   

13.
This study is focused on the use of ultrasound to disrupt Microcystis aeruginosa growth, with consideration for the gap between laboratory-scale experiment and field application. Laboratory-scale sonication systems with different frequencies (i.e., 20, 584, 869, and 1137 kHz) for 30 min at 10-min intervals were conducted to investigate their effectiveness at disrupting M. aeruginosa growth. The toxicological effect of sonicated M. aeruginosa including microcystin-LR was also evaluated using a Daphnia magna acute toxicity test. High frequencies, 869 and 1137 kHz, resulted in more than a 60% reduction of cells after 30 min of sonication. Low to middle frequencies, 20 and 584 kHz, only showed a 30% reduction of cells after 30 min of sonication. High frequencies also led to the inactivation of cell proliferation during M. aeruginosa regrowth, due to cellular destruction and finally cell death. However, the concentration of microcystin-LR and the potential adverse effects of M. aeruginosa on D. magna could not be controlled using ultrasonic frequencies. Therefore, our results suggest that ultrasonic frequencies between 869 and 1137 kHz are effective at controlling bloom formation in M. aeruginosa and the regrowth of M. aeruginosa after sonication, but not at controlling microcystin-LR concentrations and its adverse effects on D. magna. Consequently, a combined purification technology to reduce the cyanotoxins such as microcystin-LR, rather than ultrasonic frequency alone, will be needed to control M. aeruginosa growth and its toxicity levels in the aquatic environment.  相似文献   

14.
The Miocene Ar Rajmah Group, exposed along the Soluq-Al Abyar road cut in southern Al Jabal Al Akhdar, NE Libya, is very rich in both micro- and macrofossils, especially molluscs and echinoids. Seven shell concentrations were recognized of which four from the Benghazi Formation; pectinidssmall oyster concentration (BSC1), Echinolampas sp.–Clypeaster cf. martini concentration (BSC2), molluscan shell concentration (BSC3), and Echinolampas cf. amplus–Clypeaster acclivis concentration (BSC4). Three shell concentrations occur in the Wadi Al Qattarah Formation; large oyster concentration (QSC1), Crassostrea gryphoidesChlamys zitteli concentration (QSC2), and Cubitostrea digitalina concentration (QSC3). The main factors controlling the formation of the shell concentrations were storm-induced waves and currents, reduced sediment input, settling behavior of benthic macro-invertebrates, and productivity.  相似文献   

15.
The Saga Plain in Japan contains a 10–30 m thick Holocene clayey soil deposit with a natural water content generally more than 100% and a liquidity index (I L ) larger than 1.0. Most of this is a marine deposit known as the Ariake clay formation. Using salinity in the pore water of this deposit as an index, the mechanism of post-depositional salinity leaching from the Ariake clay formation has been investigated. This has been achieved using current measurements of the salinity distribution in the deposit and the groundwater flow velocity in an underlying Pleistocene gravelly sand layer, together with advection–diffusion analyses. It is suggested that diffusion together with possible rainfall percolation and/or upward seepage flow from the Pleistocene gravelly sand layer was the main mechanism causing salinity leaching. Detailed analysis of the test results from four boreholes indicates that for the locations where the activity of the clay minerals was less than 1.25, salinity leaching probably accounts for the observed low undrained shear strength (<0.5 kPa) of remoulded soil samples, high values of the sensitivity (S t ), and the formation of a quick clay.  相似文献   

16.
Anaerobic digestate is a by-product from the biogas production which can be applied as replacement for mineral fertilizers. But digestate has both phytostimulating and phytotoxic effects on plants. Fertilizers toxicity and phytotoxicity should be measured to preserve the environment. The phytotoxicity of digestate from anaerobic digestion of swine manure was evaluated using several official protocols. Germination toxicity was tested on Pisum sativum L. and Lepidium sativum L., roots elongation on Hordeum vulgare L. and shoots elongation on Lactuca sativa L. To determine digestate growth toxicity, pot experiments were performed on two Solanum lycopersicum L. cvs. Digestate dilutions ranging from 5 to 30 % were tested in the different assays. Standard protocols were applied to non-standard species: Cichorium endivia L. (shoots elongation) and two Capsicum annuum L. cvs (pot trials). Digestate concentrations stimulating germination and early life stages were between 2 and 3 %. Pot trials suggested that during more advanced growth stages, digestate can be applied at 20–30 %. The main finding was that to minimize digestate phytotoxicity, direct contact with germinating seeds or young plants should be avoided. During plants late growth, digestate administration might be increased carefully to minimize salinity and ammonia excess. Soil samples from the pot trials were analysed at the starting, mid- and final experimental stages. Conclusion was that digestate utilization may have also a soil liming effect, increasing electric conductivity, pH and contrasting soil acidification.  相似文献   

17.
The present study explores the effect of salinity and dissolved organic carbon (DOC) gradients on the stability and reactivity of titanium dioxide nanoparticle (TiO2-NP) agglomerates in ambient water from the Lagoon of Venice and their possible effect on nauplii sampled at the same locations. In all ambient water samples, TiO2-NPs formed rapidly micrometre-sized agglomerates. The increase in the salinity and concomitant decrease in DOC content induced the formation of larger agglomerates, with z-average hydrodynamic diameter increasing with TiO2-NP concentration and exposure duration. Under the studied conditions, ζ-potential exhibited negative values. In line with agglomeration results, enhancement of the salinity and lower DOC resulted in less negative ζ-potential with close to 0 values in the dispersions of 100 mg L?1 TiO2-NPs in sea water. Two-hour exposure to micrometre-sized agglomerates of TiO2-NPs resulted in an increase in the fluorescence of propidium iodide (PI) stained nauplii in comparison with unexposed controls, but had no effect at 24-h exposure. The increase in nauplii-associated PI fluorescence was more noticeable in dispersions containing 100 mg L?1 than those containing 10 mg L?1 TiO2-NPs, suggesting membrane permeability alteration in a concentration-dependent manner. However, the PI staining results have to be interpreted with caution because of the possible dye binding to the nauplii surface without penetration of cellular membrane. The effect of TiO2-NPs on nauplii was more pronounced at higher salinity and decreased with increasing DOC concentrations at 2 h, while no trends were found at 24-h exposure, as well as exposure to 100 mg L?1 TiO2-NPs.  相似文献   

18.
Pore solution salinity has important bearing on engineering behavior of marine sediments as they influence electrochemical stress (AR) and differential osmotic stress (?π) of the salt-enriched clays. The electrochemical stress (AR) is contributed by van der Waals (A) attraction and diffuse ion layer repulsion (R), while the differential osmotic stress (?π) is governed by the differences in dissolved salt concentrations in solutions separated by osmotic membrane. The paper examines the relative influence of differential osmotic stress (Δπ) and electrochemical stress (AR) on the consolidation behavior of slurry consolidated kaolinite specimens, which are known to be encountered in recent alluvial marine sediments. Methods are described to evaluate the magnitudes of these physico-chemical components and their incorporation in true effective stress. Results of the study demonstrate that differential osmotic stress finitely contributes to true effective stress. The contribution from differential osmotic stress enables kaolinite specimens to sustain larger void ratio during consolidation.  相似文献   

19.
Understanding the changes in permeability of soil, when soil is subjected to high confining pressure and flow pressure, which may alter the textural and geomechanical characteristics of soil, is of great importance to many geo-engineering activities such as, construction of high-rise buildings near the coast or the water bodies, earthen dams, pavement subgrades, reservoir, and shallow repositories. It is now possible to evaluate the changes in permeability of soil samples under varying conditions of confining pressure and flow pressure using flexible wall permeameter (FWP). In the present study, investigation was carried out on a cylindrical sample of granular soil employing FWP under varied conditions of confining pressure (σ3)—50–300 kPa, which can simulate the stress conditions equivalent to depth of about 20 m under the earth’s crust, and a flow pressure (fp)—20–120 kPa, which is mainly present near the small earthen embankment dams, landfill liners, and slurry walls near the soft granular soil with high groundwater table. The obtained results indicate a linear relationship between hydraulic conductivity (k) with effective confining pressure (σeff.), k, decreasing linearly with an incremental change in σeff.. Further, k increases significantly with an increase in fp corresponding to each σeff., and q increases significantly with increase in the fp corresponding to each (σ3). It was also observed that corresponding to the low fp of 20 kPa, the reduction in k is nonlinear with σ3. The percentage reduction in k is observed to be 9, 13, and 27% corresponding to σ3 of 50–100, 100–200, and 200-300 kPa, respectively.  相似文献   

20.
The stress regime in a Rotliegend reservoir of the Northeast German Basin   总被引:2,自引:0,他引:2  
In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V (S hmin ≥ 0.55S V ) and of the maximum horizontal stress S Hmax ≤ 0.78–1.00S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V  = 100 MPa, S hmin = 55 MPa and S Hmax = 78?100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号