首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Daguangbao landslide is the largest co-seismic landslide triggered by the Wenchuan earthquake (Ms 8.0) occurred on 12 May 2008. The landslide, which is 4.6 km long and 3.7 km wide, involves a volume of approximately 1.2 × 109 m3. An exposed slip surface, situated at the southern flank of its source area, was observed with a length of 1.8 km along the main sliding direction and an area of 0.3 km2. To study the geological and tectonic characteristics of the source area and their contributions to the landslide formation during the earthquake, detailed geological investigations were firstly conducted. And it is reached that the landslide occurred on the northwestern limb of the Dashuizha anticline with its scarp showing several geological structures, including joint sets, local faults, and folds. These tectonic-related structures potentially influenced the failure of the landslide. Secondly, further investigations were focused on the inclined planar sliding surface using 12 exploratory trenches, nine boreholes, a tunnel, borehole sonic data, and micro-images. These data reveal that the rock mass along the sliding surface was the fragmented rock of a bedding fault. A pulverized zone was observed on the sliding surface, which was the zone of shear localization during the landslide. This suggests that the shear failure of the Daguangbao landslide developed within the bedding fault. The rapid failure of the landslide was associated with the degradation of the rock mass strength of the bedding fault both before and during the 2008 Wenchuan earthquake. With this study, we propose that a pre-existing large discontinuity within a slope may be the basis for initiating a large landslide during earthquake.  相似文献   

2.
An unstable rock slump, estimated at 5 to 10 × 106 m3, lies perched above the northern shore of Tidal Inlet in Glacier Bay National Park, Alaska. This landslide mass has the potential to rapidly move into Tidal Inlet and generate large, long-period-impulse tsunami waves. Field and photographic examination revealed that the landslide moved between 1892 and 1919 after the retreat of the Little Ice Age glaciers from Tidal Inlet in 1890. Global positioning system measurements over a 2-year period show that the perched mass is presently moving at 3–4 cm annually indicating the landslide remains unstable. Numerical simulations of landslide-generated waves suggest that in the western arm of Glacier Bay, wave amplitudes would be greatest near the mouth of Tidal Inlet and slightly decrease with water depth according to Green’s law. As a function of time, wave amplitude would be greatest within approximately 40 min of the landslide entering water, with significant wave activity continuing for potentially several hours.  相似文献   

3.
Landslides located beside reservoirs tend to be unstable or are characterized by large deformation during the drawdown process. This has been accepted by many experts. In this paper, we use Qiaotou Landslide, which is located beside the Three Gorges Reservoir (TGR), as a typical case study to investigate and predict the deformation mechanism during the drawdown process of TGR in detail. According to field investigation, the landslide mass is mainly composed of thick, loose silt and clay mixed with fragments of rock. Bedrock is mainly composed of silty sandstone. Field and laboratory tests indicate that the landslide mass has a high permeability coefficient. If the water level declines fast, intense seepage force may result. Based on these data, we establish a three-dimensional geological model of Qiaotou Landslide by FLAC3D and perform a numerical simulation using the saturated–unsaturated fluid–solid coupling theory. For the simulation, we assume that the drawdown from 175 to 145 m takes place with a speed of 25 cm/day, which is based on the extreme water level regulation program of TGR. The simulation shows that this causes a significant deformation in the landslide mass and that the maximum displacement within the landslide is 24.2 cm. During the drawdown process, the maximum displacement zone is shifting from the upper part of the landslide where bedrock surface is steeper and thickness of loose deposits is less to the middle part of the landslide where bedrock surface is less steep and thickness of loose deposits is higher. The deformation mechanism indicates that in the early stage of the drawdown the deformation of the landslide mass is mainly caused by seepage and in the later stage mainly by consolidation.  相似文献   

4.
A 12 million of m3 translational rockslide developed on a dip slope underlain by limestone with interlayered marls, and responsible for the destruction of the Montclús village in the fourteenth century, has been investigated by means of geomorphological and geophysical surveys. The combination of historical-geoarcheological, geomorphological, seismic refraction and electrical resistivity imaging datasets allowed the (1) reconstruction of the late Quaternary episodic evolution of the landslide, (2) characterization of the geometry and internal structure of the slid mass and (3) identification of preferential groundwater flow paths that favoured slope instability. The development of the landslide involved at least two different displacement episodes controlled by sliding surfaces at successively deeper stratigraphic positions. The first landsliding event, recorded by highly weathered landslide deposits situated above a perched failure plane, occurred approximately during the global Last Glacial Maximum (23–19 ka BP). The most recent event, which destroyed the Montclús village built on already slid rocks, is placed in the fourteenth century. Most probably, this reactivation event was triggered by the 1373 Ribagorza earthquake, with an estimated moment magnitude of M w 6.2. This work illustrates the benefits of combining geomorphological data with complementary geophysical technics in landslide investigation.  相似文献   

5.
戒台寺滑坡位于北京市门头沟区马鞍山的北麓,马鞍山背斜的北翼,组成边坡的岩性较为软弱。由于多期构造运动的影响,岩体中裂隙发育,岩体结构破碎,风化卸荷严重。边坡为顺倾结构,边坡中顺倾坡外的软弱夹层、软弱结构面及断层发育,它们分别为边坡的滑动提供了滑动面和切割面的作用。由于边坡中岩层倾角大于边坡的坡度,因此并没有剪出的临空面,只是一个受特定边坡结构控制的蠕变体。但是近年来在胜利煤矿和石厂煤矿的大规模采掘Ⅳ级平台山梁下煤层影响下,形成采空移动盆地,造成Ⅳ级平台山梁整体塌陷,客观上为蠕变体提供了变形空间,引起戒台寺SN向山梁Ⅰ~Ⅲ级平台坡体依附于断层破碎带或软弱夹层的松弛,导致各块坡体沿软弱结构面向临空产生蠕动和滑动。采石场大药量爆破的地震波的频繁作用影响,使坡体内的构造结构面扩展松弛张开,表水易于下渗,岩体强度及变形特性显著降低,斜坡稳定性对降雨入渗的敏感性显著提高,最终导致了蠕变体变形的加速。  相似文献   

6.
Mount Telout, situated at the edge of the Murzuq Basin, is a 325 m high conical hill within a circular collapse structure that records 0·5 km3 of sand intrusion into Silurian shales. Based on a comparison with other similar circular collapse structures around the Murzuq Basin, it is argued that sand injection in the form of pipes occurred during the Devonian. The overpressures triggering the process are inferred to result from a combination of: (i) tectonic uplift at a basin scale that initially focused regional ground water flows; and (ii) igneous intrusion within the sand‐rich Cambrian–Ordovician strata. The palaeorelief buried under the regionally extensive Silurian shales may have locally focused overpressures and localized sand injection at the 1 to 10 km scale. The Mount Telout injected sandbody and related features offer exceptional, seismic‐scale outcrop analogues for sand injections that are often identified in seismic reflection data. Large‐scale sand injections might be essential in petroleum exploration of the North African Lower Palaeozoic basins as they form seal‐bypass systems.  相似文献   

7.
2008年5 12四川汶川里氏8级地震,引发了大量崩塌滑坡。安县高川乡的大光包滑坡是规模最大的高山滑坡,总方量约10109m3。它的形成机制和运动学特征引起国内外学者的广泛关注。在前人调查研究的基础上,本课题组对滑坡的外形和结构特征及其所处地质环境作了较详细地现场调查,系统研究了滑坡的形成和演化过程,开展了室内实验及震动台物理模拟实验,通过与类似地区地质现象的对比分析,对滑坡获得以下认识: (1)大光包滑坡是一个巨型的楔型槽状滑落体,以下伏的震旦系白云岩层面为主滑面,以与层面近于正交的早期X构造裂隙面为侧滑面,两控制面交线倾向北北东,倾角12左右; (2)滑坡前缘的黄洞子沟是滑坡的剪出口位置,滑坡起动加速滑入黄洞子沟后受到沟道左侧山梁的阻挡而迅速制动,受阻的滑坡体上部高速越过山梁冲向山坡并发展为碎屑流; (3)作为滑坡主滑面的震旦系白云岩岩层,为一经历了强烈岩溶的白云岩沙化层,强烈地震引发沙化层因突然产生的超空隙压力而流态化,这可能是导致山体突然失稳的主要原因。大光包滑坡事件可能为我们提供了地震引发山体失稳的一种新的模式,在分析研究和评价山坡的演化和稳定性时具有重要意义。  相似文献   

8.
2008年汶川Ms8.0级强震触发了体积近12×108 m3的大光包滑坡。该滑坡发生于古生代碳酸盐岩地层,滑带地质背景为斜坡内部深埋400 m、最大厚度达5 m的先期层间构造错动带。最新调查表明,该错动带是斜坡内部地下水通道,错动带岩体处于饱和状态。为揭示强震过程与地下水相关的大光包滑坡启动机制,提出了一种具有软弱层带的硬质碳酸盐岩边坡简化模型,将层间构造错动带概化为碳酸盐岩硬层内部软弱层带,采用FLAC3D程序中的流固耦合算法模拟了模型的响应特性。研究结果表明:强震过程中软弱层带上下碳酸盐岩硬层的变形响应时间、波型、大小出现明显差异,上硬层相对于下硬层产生了张离、压缩和剪切3种非协调变形模式,由此对软弱层带产生了振动冲压-张拉和振动剪切动力学行为,饱水软弱层带形成了具有瞬间放大和累积增涨特征的超孔隙水压力。这里将上下硬层差异性变形称为非协调变形,认为非协调变形是软弱层带应力放大成因,推测软弱层带应力瞬间放大以及放大应力长持时作用下的岩体致损是超孔隙水压力激发和累积的成因;强震过程软弱层带超孔隙水压力导致其内有效应力快速降低,使得斜坡前部锁固段应力快速集中,而后被突然剪断,滑坡骤然启动,揭示了强震过程中超孔隙水压力是大光包滑坡启动的主要原因。  相似文献   

9.
This paper presents a study of the effects of a potential landslide in La Yesca Reservoir, Jalisco-Nayarit, Mexico. The main purpose of the paper is to predict the maximum wave amplitude, wave run-up, and dam overtopping. The landslide is formed by an unstable slope of more than 24 Mm3 that is partially submerged for the range of the reservoir operation levels. The dynamics of the sliding mass were obtained in detail considering that it moves over a pair of failure surfaces with the potential rupture of a third surface. The paper presents results of a physical model of the reservoir based on Froude similitude (scale 1:200). Impulse waves are produced with a solid wedge shape slide as it moves on rails. The movement was calibrated to reproduce the dynamics of the landslide. Also, numerical modelling of the event was performed with a 2D implicit model that solves the two-dimensional shallow water equations. In this case, the impulse waves were generated at each time increment with the variation of the ground elevation (obtained from the dynamics of the landslide) for the mesh points where the landslide passes. The results of both studies are similar.  相似文献   

10.
11.
清江水布垭库区大堰塘滑坡涌浪分析   总被引:4,自引:0,他引:4  
殷坤龙  杜娟  汪洋 《岩土力学》2008,29(12):3266-3270
2007年6月15日位于水布垭水库巴东县清太平镇的大堰塘滑坡发生滑动,激起高达50 m的巨大涌浪,造成了沿岸的人员伤亡。为了解决大堰塘滑坡引起的涌浪问题,把滑坡引起的涌浪分为体积涌浪和冲击涌浪两部分。根据体积守恒原理及块体水下运动的位移公式求出了初始涌浪的计算公式。把滑坡涌浪衰减过程分为急剧衰减和缓慢衰减两个阶段来考虑,并认为急剧衰减阶段的涌浪的衰减符合指数衰减规律,缓慢衰减阶段符合明槽水流的沿程水头损失规律,对其涌浪的传播和爬坡进行了深入探讨,并与实际调查结果进行了对比分析,该成果对水库库岸滑坡的涌浪传播的研究具有一定的参考意义。  相似文献   

12.
王浩杰  孙萍  韩帅  张帅  李晓斌  王涛  辛鹏  郭强 《现代地质》2021,35(3):732-743
2019年9月14日11时,受多日降雨影响,甘肃省定西市通渭县常家河镇小庄村发生大规模黄土滑坡,体积约800万m3。滑坡造成部分农田、公路及阳坡大桥损毁,直接经济损失约2 347.2万元。在对滑坡现场进行大量地面调查的基础上,通过无人机航拍、现场测绘、走访调查和数值模拟等手段对滑坡的变形破坏特征进行了分析,并在此基础上探讨了其成因机制。结果表明:斜坡体是在震裂、蠕变、软化、水动力等多种条件下按照一定的先后顺序由稳态逐步演化至失稳;该滑坡的失稳演化过程和灾变机制可以概括为原始斜坡(黄土、泥岩二元层状结构)-地震触发(滑坡堆积体、坡体震裂损伤)-蠕变弱化(层间剪切带、裂缝和落水洞扩展)-降雨激发(滑带软化、泥化,水压力作用)-失稳滑动(滑面贯通)5个阶段;由于长期的蠕变和雨水的渗透冲蚀,坡体上的落水洞和地下暗河十分发育,且是控制本次滑坡边界的关键因素;滑坡后缘和前缘变形剧烈,中部变形相对稍弱,推断该滑坡为受地形及地下水作用控制明显的牵引-推移式复合滑坡。  相似文献   

13.
In the present study, mass movements (landslide and mudslide) bound to a gully located at Mendong, a suburb of Yaoundé in Cameroon were examined using hydrological, geotechnical and geomorphological observations. The data indicate that water is an important causative factor of mass movements in the area studied. In fact, the water flow (waste water and runoff) provokes the saturation of materials at the slope foot. These materials lose their mechanical qualities and some deep ruptures generate landslide. During the rainy season, when the cumulative rainfall is more than 200 mm, these landslides are accompanied by mudslides that generate disturbances on the infrastructure situated around the gully and farther downstream. The economic and environmental damages resulting from the Mendong mass movements are considerable, such as degradation of the topography, losses in farm land, transportation and downstream sedimentation in a pond situated at the slope foot, loss of life and damage to the economy. All this calls for a multidisciplinary and integrated approach to hazard assessment and risk mitigation, which included data collection and interpretation, growing public and authority awareness, and preventing or reducing runoff and waste water flows by proper management and drainage.  相似文献   

14.
Subaerial landslides falling into confined water bodies often generate impulsive waves. Damaging landslide tsunamis in Three Gorges Reservoir, China, have struck several times in the last 15 years. On June 24, 2015, a 23?×?104 m3 slope failure occurred on the east bank of the Daning River opposite Wushan Town. The sliding mass intruded into the Three Gorges Reservoir and initiated a reservoir tsunami that resulted in two deaths and significant damage to shipping facilities. A post-event survey revealed the landslide geometry and wave run-up distribution, while an eyewitness video captured most of the landslide motion. Employing these firm constraints, we applied the Tsunami Squares method to simulate the 2015 Hongyanzi landslide and tsunami. The simulation revealed that the landslide experienced a progressive failure in the first few seconds and impacted the water with a maximum velocity of ~?16 m/s. The initial wave propagated to the opposite shore in an arch shape, and the water surface reached a maximum amplitude of ~?11 m near the landslide. Wave amplitude-time curves at four points on the river cross section show that the initial wave reached Wushan town in about 50 s with an average wave velocity of ~?30 m/s. The maximum wave run-ups on the shoreline opposite the landslide are around 6 m and attenuate to less than 1 m beyond 2-km distance. The landslide simulation matches the observed geological profile and the eyewitness video, and the numerical results coincide with the observed wave run-up heights. Nearly 80% of landslide energy is lost due to frictional resistances, but the remaining fraction imparted to the tsunami carried catastrophic consequences to a large region. The numerical results emphasize the efficiency and accuracy of Tsunami Squares method for a “Quick Look” simulation of a potential landslide.  相似文献   

15.
根据滑体与滑床土的结构差异特性,其中电阻率特性也有显著不同,利用WDJD-1型多功能数字直流激电仪和改进的探测电极装置,分别在滑坡后壁原状黄土地层、探槽及钻孔中测试黄土滑坡滑面上下各层土的电阻率值。试验结果显示电阻率测试曲线在滑动带位置出现异常跃变现象,而曲线在未滑动过的黄土地层之间变化差异不明显。这一异常突变特性,在实践中可作为鉴别滑动面位置的特征标志。该探测方法充分利用现有的勘探技术条件,操作简便,试验结果直观,可在黄土滑坡勘察实践中推广使用。  相似文献   

16.
Fiorucci  M.  Iannucci  R.  Lenti  L.  Martino  S.  Paciello  A.  Prestininzi  A.  Rivellino  S. 《Natural Hazards》2016,86(2):345-362

A monitoring system is operative in the Peschiera Springs slope (Central Apennines, Italy) to mitigate the landslide risk related to the hosted main drainage plant of Rome aqueducts by providing alert warning. Such a strategy allows to avoid out-of-service episodes so reducing extra-costs of water distribution management. The Peschiera Springs slope is involved in a rock mass creep characterized by an average steady strain rate of 1 mm year−1 and responsible for several landforms including sinkholes, subvertical scarps and trenches. Moreover, an average aquifer discharge of 19 m3 s−1 causes an intense limestone dissolution concentrated in correspondence with release bands and discontinuities that dislodge the jointed rock mass. Since 2008, an accelerometric network has been operating within the slope; about 1300 microseismic local events were recorded up to now, distinguished in failures and collapses. A control index, based on frequency of occurrence and cumulative energy of the recorded microseismic events was defined to provide three levels of alert. In 2013, a temporary nanoseismic Seismic Navigation System (SNS) array was installed inside a tunnel of the drainage plant to integrate the pre-existent seismic monitoring system. This array allowed to record 37 microseismic events, which locations are in good agreement with the evolutionary geological model of the ongoing gravitational slope deformation. In 2014, a permanent nanoseismic SNS array was installed in the plant and allowed to record several sequences of underground collapses including more than 500 events. The nanoseismic monitoring system is allowing to: (1) increase the detection level of the monitoring system; (2) locate hypocentres of the events; and (3) detect precursors of the strongest events.

  相似文献   

17.
A monitoring system is operative in the Peschiera Springs slope (Central Apennines, Italy) to mitigate the landslide risk related to the hosted main drainage plant of Rome aqueducts by providing alert warning. Such a strategy allows to avoid out-of-service episodes so reducing extra-costs of water distribution management. The Peschiera Springs slope is involved in a rock mass creep characterized by an average steady strain rate of 1 mm year?1 and responsible for several landforms including sinkholes, subvertical scarps and trenches. Moreover, an average aquifer discharge of 19 m3 s?1 causes an intense limestone dissolution concentrated in correspondence with release bands and discontinuities that dislodge the jointed rock mass. Since 2008, an accelerometric network has been operating within the slope; about 1300 microseismic local events were recorded up to now, distinguished in failures and collapses. A control index, based on frequency of occurrence and cumulative energy of the recorded microseismic events was defined to provide three levels of alert. In 2013, a temporary nanoseismic Seismic Navigation System (SNS) array was installed inside a tunnel of the drainage plant to integrate the pre-existent seismic monitoring system. This array allowed to record 37 microseismic events, which locations are in good agreement with the evolutionary geological model of the ongoing gravitational slope deformation. In 2014, a permanent nanoseismic SNS array was installed in the plant and allowed to record several sequences of underground collapses including more than 500 events. The nanoseismic monitoring system is allowing to: (1) increase the detection level of the monitoring system; (2) locate hypocentres of the events; and (3) detect precursors of the strongest events.  相似文献   

18.
Site and laboratory investigation of the Slano blato landslide   总被引:2,自引:0,他引:2  
The Slano blato landslide is situated above the village of Lokavec, in the western part of Slovenia. This area is one of the seismically most active parts of the country. Considering just the last decade, movement of the landslide was observed in November 2000, when the displaced material reached a velocity of 60–100 m/day. Silty and clayey gravel above flysch layers of marl and sandstone formed the landslide mass.Geotechnical investigations of the landslide were performed in 2003 and 2004, when the depth of the landslide was determined, as well as the geotechnical parameters and the sliding mechanism. Rheological tests were also carried out for further analysis. Based on the investigation results and the observed landslide velocity, the landslide was classified as an earth flow. Inclinometer measurements showed that the landslide has two shear surfaces, with different behaviour shown as each.A stability analysis was carried out numerically by applying the Mohr–Coulomb and Burger elasto–plastic models. The Mohr–Coulomb model indicated that the high water level influences the landslide instability. In the case of the Burger elasto-plastic model, a higher velocity was calculated, at a water content of between 35 and 40%.  相似文献   

19.
On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23?×?104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7?×?104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.  相似文献   

20.
Chong Xu  Xiwei Xu  Guihua Yu 《Landslides》2013,10(4):421-431
On 14 April 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7.1 struck Yushu County, Qinghai Province, China. A total of 2,036 landslides were interpreted from aerial photographs and satellite images, verified by selected field checking. These landslides cover about a total area of 1.194 km2. The characteristics and failure mechanisms of these landslides are presented in this paper. The spatial distribution of the landslides is evidently strongly controlled by the locations of the main co-seismic surface fault ruptures. The landslides commonly occurred close together. Most of the landslides are small; there were only 275 individual landslide (13.5 % of the total number) surface areas larger than 1,000 m2. The landslides are of various types. They are mainly shallow, disrupted landslides, but also include rock falls, deep-seated landslides, liquefaction-induced landslides, and compound landslides. Four types of factors are identified as contributing to failure along with the strong ground shaking: natural excavation of the toes of slopes, which mean erosion of the base of the slope, surface water infiltration into slopes, co-seismic fault slipping at landslide sites, and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by the co-seismic ground shaking. To analyze the spatial distribution of the landslides, the landslide area percentage (LAP) and landslide number density (LND) were compared with peak ground acceleration (PGA), distance from co-seismic main surface fault ruptures, elevation, slope gradient, slope aspect, and lithology. The results show landslide occurrence is strongly controlled by proximity to the main surface fault ruptures, with most landslides occurring within 2.5 km of such ruptures. There is no evident correlation between landslide occurrences and PGA. Both LAP and LND have strongly positive correlations with slope gradient, and additionally, sites at elevations between 3,800 and 4,000 m are relatively susceptible to landslide occurrence; as are slopes with northeast, east, and southeast slope aspects. Q4 al-pl, N, and T3 kn 1 have more concentrated landslide activity than others. This paper provides a detailed inventory map of landslides triggered by the 2010 Yushu earthquake for future seismic landslide hazard analysis and also provides a study case of characteristics, failure mechanisms, and spatial distribution of landslides triggered by slipping-fault generated earthquake on a plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号