首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tectono‐metamorphic evolution of the Hercynian intermediate–upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P–T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P–T paths have been constrained for metapelites of the basal level of the intermediate–upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium‐P metamorphic assemblages (garnet‐ and staurolite‐bearing assemblages) towards low‐P/high‐T metamorphic assemblages (fibrolite‐ and cordierite‐bearing assemblages). Peak‐metamorphic conditions of ~590 °C and 0.35 GPa are estimated by integrating microstructural observations with P–T pseudosections calculated for bulk‐rock and reaction‐domain compositions. The top level of the intermediate–upper crust (Campana area) recorded only the major heating phase at low‐P (~550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U–Th–Pb dating of monazite from schists containing low‐P/high‐T metamorphic assemblages gave a weighted mean U–Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low‐P/high‐T metamorphism in the intermediate‐to‐upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P–T evolution both in the lower and upper crust. It is proposed that post–collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust.  相似文献   

2.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

3.
The thermal and exhumation history of late Hercynian granitoids from Calabria (Sila and Serre massifs) has been studied using thermobarometry and radiometric age determinations. The uplift and erosion which followed contractional tectonics of Tertiary age exposed in Calabria a nearly complete section of the Hercynian crust. Field data, constrained by igneous thermobarometrical data, have enabled us to draw simplified crustal profiles. In both the Sila and Serre massifs, granitoids make up the intermediate portions of the crustal sections and are stacked as tabular intrusions for up to 13 km cumulative thickness. Shallow granitoids are characterized by a weak fabric, mostly developed in the magmatic stage, whereas deep‐seated granitoids display a strong fabric developed in the magmatic state and, with decreasing temperatures, in the subsolidus state. The intrusive bodies were emplaced at 300–290 Ma, at a time when the Calabrian crust was undergoing extensional tectonics and crustal thinning. The subsequent post‐Hercynian evolution is recorded by Rb‐Sr dates of micas and fission track ages of zircon and apatite obtained from granitoids emplaced at different depths. A decrease in Rb‐Sr and fission track ages is observed as depth of emplacement increases. Data on the post‐Hercynian geological evolution of Calabria were used to model in three stages the cooling and exhumation history of deep‐seated and shallow granitoids. The first stage, in Permian to Triassic times, was characterized by slow erosion. It was followed by a second stage of extensional tectonics in Jurassic times. The third stage was exhumation during the Apenninic Orogeny. The model has generated two P–T–t arrays, one for deep‐seated and the other for shallow granitoids of the Serre massif. The T–t paths suggest that the dates of micas, zircon and apatite are cooling ages. They also show that deep‐seated granitoids remained at temperatures above the brittle–plastic transition for a long time, whereas shallow granitoids cooled rapidly. Distinct P–T–t paths explain why deep‐seated and shallow granitoids display different fabric and microstructural features. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
The P–T evolution of amphibolite facies gneisses and associated supracrustal rocks exposed along the northern margin of the Paleo to MesoArchean Barberton greenstone belt, South Africa, has been reconstructed via detailed structural analysis combined with calculated K(Mn)FMASH pseudosections of aluminous felsic schists. The granitoid‐greenstone contact is characterized by a contact‐parallel high‐strain zone that separates the generally low‐grade, greenschist facies greenstone belt from mid‐crustal basement gneisses. The supracrustal rocks in the hangingwall of this contact are metamorphosed to upper greenschist facies conditions. Supracrustal rocks and granitoid gneisses in the footwall of this contact are metamorphosed to sillimanite grade conditions (600–700 °C and 5 ± 1 kbar), corresponding to elevated geothermal gradients of ~30–40 °C km?1. The most likely setting for these conditions was a mid‐ or lower crust that was invaded and advectively heated by syntectonic granitoids at c. 3230 Ma. Combined structural and petrological data indicate the burial of the rocks to mid‐crustal levels, followed by crustal exhumation related to the late‐ to post‐collisional extension of the granitoid‐greenstone terrane during one progressive deformation event. Exhumation and decompression commenced under amphibolite facies conditions, as indicated by the synkinematic growth of peak metamorphic minerals during extensional shearing. Derived P–T paths indicate near‐isothermal decompression to conditions of ~500–650 °C and 1–3 kbar, followed by near‐isobaric cooling to temperatures below ~500 °C. In metabasic rock types, this retrograde P–T evolution resulted in the formation of coronitic Ep‐Qtz and Act‐Qtz symplectites that are interpreted to have replaced peak metamorphic plagioclase and clinopyroxene. The last stages of exhumation are characterized by solid‐state doming of the footwall gneisses and strain localization in contact‐parallel greenschist‐facies mylonites that overprint the decompressed basement rocks.  相似文献   

5.
The Central Anatolian Crystalline Complex (CACC) is a microcontinent in the Alpine–Himalayan belt. It has previously been considered as a coherent structural entity, but, although the entire CACC is comprised of similar rocks (primarily metasedimentary rocks and granitoids), it consists of at least four tectonic blocks characterized by different PTt paths. These blocks are the K?r?ehir (north‐west), Akda? (north‐east), Ni?de (south) and Aksaray (west) massifs. The northern massifs experienced thrusting and folding during collision and were slowly exhumed by erosion; metamorphic rocks are characterized by clockwise PT paths at moderate PT and local low‐P–high‐T (LP–HT) overprinting in the highest grade rocks. Apatite fission track ages are Eocene to Oligocene (47–32 Ma). The Aksaray block represents the hot, shallow mid‐crust of a Late Cretaceous–early Tertiary arc. It is dominated by intrusions; rare metapelitic rocks record low‐P (< 4 kbar) regional metamorphism overprinted by LP–HT contact metamorphism. Apatite fission track ages are 50–45 Ma. The Ni?de massif is different from the other CACC blocks because it evolved as a core complex in a wrench‐dominated setting. It is characterized by clockwise PT paths at moderate PT followed by widespread LP–HT metamorphism. Apatite fission track ages are Miocene (12–9 Ma), significantly younger than those in the northern massifs. Ni?de rocks resided in the mid‐crust at a time when the rest of the CACC was at or near the Earth's surface. Variations in PTt and tectonic histories — especially timing of exhumation — between the northern and southern CACC reflect the difference between head‐on collision vs. mid‐crustal wrenching.  相似文献   

6.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

7.
The timing and thermal effects of granitoid intrusions into accreted sedimentary rocks are important for understanding the growth process of continental crust. In this study, the petrology and geochronology of pelitic gneisses in the Tseel area of the Tseel terrane, SW Mongolia, are examined to understand the relationship between igneous activity and metamorphism during crustal evolution in the Central Asian Orogenic Belt (CAOB). Four mineral zones are recognized on the basis of progressive changes in the mineral assemblages in the pelitic gneisses, namely: the garnet, staurolite, sillimanite and cordierite zones. The gneisses with high metamorphic grades (i.e. sillimanite and cordierite zones) occur in the central part of the Tseel area, where granitoids are abundant. To the north and south of these granitoids, the metamorphic grade shows a gradual decrease. The composition of garnet in the pelitic gneisses varies systematically across the mineral zones, from grossular‐rich garnet in the garnet zone to zoned garnet with grossular‐rich cores and pyrope‐rich rims in the staurolite zone, and pyrope‐rich garnet in the sillimanite and cordierite zones. Thermobarometric analyses of individual garnet crystals reveal two main stages of metamorphism: (i) a high‐P and low‐T stage (as recorded by garnet in the garnet zone and garnet cores in the staurolite zone) at 520–580 °C and 4.5–7 kbar in the kyanite stability field and (ii) a low‐P and high‐T stage (garnet rims in the staurolite zone and garnet in the sillimanite and cordierite zones) at 570–680 °C and 3.0–6.0 kbar in the sillimanite stability field. The earlier high‐P metamorphism resulted in the growth of kyanite in quartz veins within the staurolite and sillimanite zones. The U–Pb zircon ages of pelitic gneisses and granitoids reveal that (i) the protolith (igneous) age of the pelitic gneisses is c. 510 Ma; (ii) the low‐P and high‐T metamorphism occurred at 377 ± 30 Ma; and (iii) this metamorphic stage was coeval with granitoid intrusion at 385 ± 7 Ma. The age of the earlier low‐T and high‐P metamorphism is not clearly recorded in the zircon, but probably corresponds to small age peaks at 450–400 Ma. The low‐P and high‐T metamorphism continued for c. 100 Ma, which is longer than the active period of a single granitoid body. These findings indicate that an elevation of geotherm and a transition from high‐P and low‐T to low‐P and high‐T metamorphism occurred, associated with continuous emplacement of several granitoids, during the crustal evolution in the Devonian CAOB.  相似文献   

8.
In situ LA–ICP–MS U–Pb monazite geochronology from the Boothby Hills in the Aileron Province, central Australia, indicates that the region records more than 80 Ma of high‐T, low‐P (HTLP) anatectic conditions during the Early Mesoproterozoic. Monazite ages from granulite facies rocks and leucosomes span the interval 1576–1542 Ma. Pegmatites that overprint the regional gneissic fabric and are interpreted to record the last vestiges of melt crystallization give ages between 1523 and 1513 Ma. Calculated P–T pseudosections suggest peak metamorphic conditions in excess of 850 °C at 0.65–0.75 GPa. The retrograde evolution was characterized by a P–T path that involved minor decompression and then cooling, culminating with the development of andalusite. Integration of the geochronological data set with the inferred P–T path trajectory suggests that suprasolidus cooling must have been slow, in the order of 2.5–4 °C Ma?1. In addition, the retrograde P–T path trajectory suggests that HTLP conditions were generated within crust of relatively normal thickness. Despite the long duration over which anatectic conditions occurred, there is no evidence for external magmatic inputs or evidence that HTLP conditions were associated with long‐lived extension. Instead, it seems probable that the long‐lived HTLP metamorphism was driven to a significant extent by long‐lived conductive heating provided by high crustal heat production in voluminous pre‐metamorphic granitic rocks.  相似文献   

9.
Collision‐related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from metasedimentary sources. However, in the late Neoproterozoic calcalkaline (CA) batholiths of the Arabian–Nubian Shield (ANS), which constitutes the northern half of the East African orogen, any sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here, we use paired in situ LASS‐ICP‐MS measurements of U–Th–Pb isotope ratios and REE contents of monazite and xenotime and SHRIMP‐RG analyses of separated zircon to demonstrate direct linkage between migmatites and granites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth at 640–600 Ma, in metapelites, migmatites and peraluminous granites of three metamorphic suites: Abu‐Barqa (SW Jordan), Roded (S Israel) and Taba–Nuweiba (Sinai, Egypt). The distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions, involving partial melting, prevailed for c. 10 Ma, from 620 to 610 Ma. REE abundances in monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates cluster at 600–580 Ma, recording retrogression to greenschist facies conditions as garnet continued to destabilize. Phase equilibrium modelling and mineral thermobarometry yield P–T conditions of ~650–680°C and 5–7 kbar, consistent with either water‐fluxed or muscovite‐breakdown melting. The expected melt production is 8–10 vol.%, allowing a melt connectivity network to form leading to melt segregation and extraction. U–Pb ages of zircon rims from leucosomes indicate crystallization of melt at 610 ± 10 Ma, coinciding with the emplacement of a vast volume of CA granites throughout the northern ANS, which were previously considered post‐collisional. Similar monazite ages (c. 620 Ma) retrieved from the amphibolite facies Elat schist indicate that migmatites are the result of widespread regional rather than local contact metamorphism, representing the climax of the East African orogenesis.  相似文献   

10.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   

11.
During Hercynian low-pressure/high-temperature metamorphism of Palaeozoic metasediments of the southern Aspromonte (Calabria), a sequence of metamorphic zones at chlorite, biotite, garnet, staurolite–andalusite and sillimanite–muscovite grade was developed. These metasediments represent the upper part of an exposed tilted cross-section through the Hercynian continental crust. P–T information on their metamorphism supplements that already known for the granulite facies lower crust of the section and allows reconstruction of the thermal conditions in the Calabrian crust during the late Hercynian orogenic event. Three foliations formed during deformation of the metasediments. The peak metamorphic assemblages grew mainly syntectonically (S2) during regional metamorphism, but mineral growth outlasted the deformation. This is in accordance with the textural relationships found in the lower part of the same crustal section exposed in the northern Serre. Pressure conditions recorded for the base of the upper crustal metasediments are c. 2.5 kbar and estimated temperatures range from <350 °C in the chlorite zone, increasing to 500 °C in the lower garnet zone, and reaching 620 °C in the sillimanite–muscovite zone. Geothermal gradients for the peak of metamorphism indicate a much higher value for the upper crust (c. 60 °C km?1) than for the granulite facies lower crust (30–35 °C km?1). The small temperature difference between the base of the upper crust (620 °C at c. 2.5 kbar) and the top of the lower crust (690 °C at 5.5 kbar) can be explained by intrusions of granitoids into the middle crust, which, in this crustal section, took place synchronously with the regional metamorphism at c. 310– 295 Ma. It is concluded that the thermal structure of the Calabrian crust during the Hercynian orogeny – as it is reflected by peak metamorphic assemblages – was mainly controlled by advective heat input through magmatic intrusions into all levels of the crust.  相似文献   

12.
In situ monazite microprobe dating has been performed, for the first time, on trondhjemite and amphibolite facies metasediments from the Peloritani Mountains in order to obtain information about the age of metamorphism and intrusive magmatism within this still poorly known sector of the Hercynian Belt. All samples show single-stage monazite growth of Hercynian age. One migmatite and one biotitic paragneiss yielded monazite ages of 311 ± 4 and 298 ± 6 Ma, respectively. These ages fit with previous age determinations in similar rocks from southern Calabria, indicating a thermal metamorphic peak at about 300 Ma, at the same time as widespread granitoid magmatism. The older of the two ages might represent a slightly earlier event, possibly associated with the emplacement of an adjacent trondhjemite pluton, previously dated by SHRIMP at 314 Ma. No evidence for pre-Hercynian events and only a little indication for some monazite crystallization starting from ca. 360 Ma were obtained from monazite dating of the metasediments, suggesting either a single-stage metamorphic evolution or a significant resetting of the monazite isotope system during the main Hercynian event (ca. 300 Ma). Rare monazite from a trondhjemite sample yields evidence for a late-Hercynian age of about 275 Ma. This age is interpreted as representing a post-magmatic stage of metasomatic monazite crystallization, which significantly postdates the emplacement of the original magmatic body.  相似文献   

13.
The Albany–Fraser Orogen in southwestern Australia preserves an important thermo‐tectonic record of Australo‐Antarctic cratonic assembly during the Mesoproterozoic. New petrologic and thermobarometric data from the Coramup Gneiss (a 10 km wide zone of high strain rocks within the NE‐trending eastern Albany–Fraser Orogen) indicate at least two high‐grade metamorphic events during 1345–1140 Ma convergence and amalgamation of the West Australian and Mawson cratons. The first event (M1) involved c. 1300 Ma granulite facies metamorphism of the Coramup Gneiss (M1a: 800–850 °C, 5–7 kbar), followed by burial and recrystallization under high‐P conditions (M1b: 800–850 °C, c. 10 kbar) prior to high‐T decompression (M1c: 700–800 °C, 7–8 kbar) and the 1290–1280 Ma emplacement of Recherche Granite sills. The second event (M2) entailed high‐T, low‐P metamorphism within dextral D2 shear zones (M2a: 750–800 °C, 5–6 kbar), followed by fluid‐present amphibolite facies M2b retrogression. Subsequent sinistral D3 mylonites and pseudotachylites are considered contemporaneous with similar structures in the adjacent Nornalup Complex that postdate the c. 1140 Ma Esperance Granite. Our petrological and thermobarometric data permit two end‐member PT‐time relationships between M1 and M2: (1) a single post‐M1b event involving continuous M1b–M1c–M2a–M2b cooling and decompression, and (2) a two‐stage post‐M1b evolution involving M1c metamorphism during the waning stages of an event unrelated causally or temporally to subsequent M2a metamorphism and D2 deformation. In a companion paper, new structural and U–Pb SHRIMP zircon data are presented to support a two‐stage PT evolution for the Coramup Gneiss, with M1 and M2, respectively, reflecting thermo‐tectonic activity during Stage I (1345–1260 Ma) and Stage II (1215–1140 Ma) of the Albany–Fraser Orogeny.  相似文献   

14.
In this paper, we report evidence for Permian magmatism at the ocean–continent transition zone of the West Iberian margin, by dating magmatic intrusion of amphibolite precursors drilled at site 1067 during ODP leg 173. The P–T conditions recorded by the amphibolites indicate that the latter was emplaced at the bottom of a 25‐km‐thick crust. Subhedral to rounded and colourless zircon grains were obtained from samples at the base of the cored section. ID‐TIMS dating on these zircon grains yielded a lower intercept age of 247 ± 5 Ma and a poorly defined upper intercept around 2 Ga. In situ dating of single zircons by ion‐microprobe (CAMECA IMS 1270) provided an age of 246 ± 5 Ma. This Permian age is interpreted as a minimum estimate for the emplacement of the gabbroic melts at the base of the Hercynian crust during the early stage of rifting between the Iberia–Newfoundland conjugate margins.  相似文献   

15.
Apatite fission track (AFT) and (U–Th)/He data from the High Atlas have been obtained for the first time to constrain the tectono‐thermal evolution of the central part of the chain. Results from Palaeozoic basement massifs indicate long residence at low temperatures, consistently with their original location out of the deepest Mesozoic rift troughs and indicating minor exhumation. The best rocks for extracting the Alpine history of the Atlas Mountains are Jurassic intrusives, which yield AFT ages centred on c. 80 Ma; thermal models based on AFT data and constrained by (U–Th)/He suggest that these ages are included in a slow cooling trend from intrusion age to c. 50 Ma ago that we attribute to post‐rift thermal relaxation. This is followed by a stability period of c. 30 Ma and then by a final exhumational cooling until present exposure. Eocene intrusives yield AFT ages similar to those of Rb–Sr and K–Ar suggesting rapid emplacement in the uppermost crust.  相似文献   

16.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

17.
Monazite electron microprobe U–Th–Pb and garnet Sm–Nd isotopic data from metapelitic assemblages in the Willyama Supergroup in the southern Curnamona Province, south‐central Australia, indicate that the terrain underwent regional greenschist to amphibolite‐grade metamorphism during the c. 500 Ma Delamerian Orogeny. The Delamerian‐aged mineral assemblages include prograde garnet–staurolite and kyanite‐bearing associations that overprint andalusite‐ and sillimanite‐bearing assemblages that are interpreted to have developed during the c. 1600 Ma Olarian Orogeny. Importantly, the development of secondary kyanite‐bearing assemblages in the southern Curnamona Province has been used previously to suggest that the Olarian Orogeny followed an anticlockwise PT evolution. If such assemblages are the product of c. 500 Ma metamorphism, then the anticlockwise PT path is an apparent path, due to the overprint of a distinct metamorphic cycle c. 1100 Ma later. Making such distinctions is therefore extremely important when using the textural and metamorphic evolution of polycyclic terrains to model the thermal behaviour of the crust during orogeny. This study highlights the utility of in situ geochronology, linking age data to petrologically important phases and assemblages.  相似文献   

18.
To better understand the evolution of deep‐seated crust of the Variscan orogen in the Sardinia‐Corsica region, we studied garnet‐bearing micaschists which were sampled 3 km east and 15 km northeast of Porto Vecchio, south‐eastern Corsica. After a careful investigation of the textural relations and compositions of minerals, especially of zoned garnet, a P–T path was reconstructed using contoured P–T pseudosections. U–Th–Pb dating of monazite in the micaschists was undertaken with the electron microprobe. The micaschists from both localities were formed along similar anticlockwise P–T paths. The prograde branch of these paths starts at 3 kbar close to 600°C in the P–T field of sillimanite and reaches peak conditions at 7 kbar and 600 (15 km NE of Porto Vecchio) to 630°C (3 km E of Porto Vecchio). The metamorphism at peak P–T conditions happened c. 340 Ma based on low‐Y (<0.65 wt% Y2O3) monazite. Ages of monazite with high‐Y contents (>2 wt% Y2O3), which probably have formed before garnet, scatter around 362 Ma. The retrograde branch of the P–T paths passes through 4 kbar at ~550°C. We conclude that the micaschists belong to a common metasedimentary sequence, which extends over the Porto Vecchio region and is separated from other metamorphic rock sequences in the north and the south by major tectonic boundaries. This sequence had experienced peak pressures which are lower than those determined for metamorphic rocks, such as micaschist and gneiss, from north‐eastern Sardinia. At present, we favour a continent–continent collisional scenario with the studied metasedimentary sequence buried during the collisional event as part of the upper plate. The contemporaneous high‐P metamorphic rocks from NE Sardinia were part of the upper portion of the lower plate. The addressed rocks from both plates were exhumed in an exhumation channel.  相似文献   

19.
Metanorites from two eclogitized metagabbros of the Hercynian French Massif Central preserve coronitic textures of hornblende, garnet, quartz and/or kyanite produced at the expense of the primary magmatic assemblage orthopyroxene and plagioclase. Using a petrogenetic grid in the CFMASH system, two possible PT evolutions for the origin of the coronas are evaluated. The sequence of reactions involving the formation of Hbl (–Ky) ± Grt and Qtz coronitic assemblages is consistent with an isobaric cooling at high pressure (c. 1–2 GPa) under hydrated conditions. However, this PT path, inferred by using only petrographical observations, is inconsistent with the geochronological constraints: emplacement of the gabbro at 490 Ma and high‐pressure metamorphism at 410 Ma. In order to reconcile petrographical observations with geochronological constraints, we propose a discontinuous two‐stage evolution involving a change in water activity with time. (1) Emplacement and cooling of the norite at low pressure under anhydrous conditions, at 490 Ma. (2) During the Hercynian orogeny, the norite experienced an increase in pressure and temperature under fluid‐present conditions. Adding water to the system implies a dramatic change in the petrogenetic grid topology, restricting the orthopyroxene–plagioclase assemblage only to high temperatures. Therefore, the breakdown of the unstable magmatic assemblage, through apparent retrograde reactions, occurred along the prograde PT path which never crossed the equilibrium boundaries of these reactions.  相似文献   

20.
Different PTt paths and Variscan tectonic evolution have been described for the lower crust of Calabria. New data have been collected through retrieval technique and construction of pseudosections to control the validity of the previous data and to check the appropriate model to describe the tectono-thermal evolution of the lower crust of the Serre (southern Calabria). The time-period from ~350 and ~270?Ma has been considered to depict the evolution from Variscan crustal thickening to exhumation as happens in the peri-Mediterranean blocks of south European Variscides and consistently with the available geochronological data. It results that: (1) P-peak at 0.9 and 1.03 GPa at the top and bottom, respectively, was reached earlier than T-peak, (2) crustal thickening developed likely earlier than 325?Ma within the stability field of kyanite, in agreement with previous studies, up to the P-peak along a geothermal gradient of about 21–22°C?km?1, (3) the T-peak of 700 and 880°C at the top and bottom, respectively, was reached in the stability field of sillimanite after a nearly isobaric heating and (4) Variscan exhumation occurred under increasing T/depth ratio and stopped 270–280?Ma ago. The P–T paths for the upper and lower portions of the section, qualitatively comparable to the numerical simulation, reflect different styles of exhumation, cooling and, according to the available geochronological data, diachronic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号