首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New osmium (Os) isotope and platinum group element (PGE) concentration data are used in conjunction with published 3He and Th isotope data to determine the relative proportions of lithogenic, extraterrestrial and hydrogenous iridium (Ir) in a Pacific pelagic carbonate sequence from the Ocean Drilling Program (ODP) Site 806 on the Ontong Java Plateau (OJP). These calculations demonstrate that lithogenic and extraterrestrial contributions to sedimentary Ir budget are minor, while hydrogenous Ir accounts for roughly 85% of the total Ir. Application of analogous partitioning calculations to previously reported data from a North Pacific red clay sequence (LL44-GPC3) yields very similar results. Total Ir burial fluxes at Site 806 and LL44-GPC3 are also similar, 45 and 30 pg cm−2 kyr−1, respectively. Average Ir/3He and Ir/xs230Thinitial ratios calculated from the entire Site 806 data set are similar to those reported earlier for Pacific sites. In general, down-core profiles of Ir, 3He and xs230Thinitial, are not well correlated with one another. However, all three data sets show similar variance and yield sediment mass accumulation rate estimates that agree within a factor of two. While these results indicate that Ir concentration has potential as a point-paleoflux tracer in pelagic carbonates, Ir-based paleoflux estimates are likely subject to uncertainties that are similar to those associated with Co-based paleoflux estimates. Consequently, local calibration of Ir flux in space and time will be required to fully assess the potential of Ir as a point paleoflux tracer. Measured 187Os/188Os of the OJP sediments are systematically lower than the inferred 187Os/188Os of contemporaneous seawater and a clear glacial-interglacial 187Os/188Os variation is lacking. Mixing calculations suggest Os contributions from lithogenic sources are insufficient to explain the observed 187Os/188Os variations. The difference between the 187Os/188Os of bulk sediment and that of seawater is interpreted in terms of subtle contributions of unradiogenic Os carried by particulate extraterrestrial material. Down-core variations of 187Os/188Os with Pt/Ir and Os/Ir also point to contributions from extraterrestrial particles. Mixing calculations for each set of several triplicate analyses suggest that the unradiogenic Os end member cannot be characterized by primary extraterrestrial particles of chondritic composition. It is noteworthy that in efforts aimed at determining the effect of extraterrestrial contributions, 187Os/188Os of pelagic carbonates has greater potential compared to abundances of PGE. An attempt has been made for the first time to estimate sediment mass accumulation rates based on amount of extraterrestrial Os in the OJP samples and previously reported extraterrestrial Os flux. Throughout most of the OJP record, Os isotope-based paleoflux estimates are within a factor of two of those derived using other constant flux tracers. Meaningful flux estimates cannot be made during glacial maxima because the OJP sediments do not record the low 187Os/188Os reported previously. We speculate that this discrepancy may be related to focusing of extraterrestrial particles at the OJP, as has been suggested to explain down-core 3He variations.  相似文献   

2.
The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ∼1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ∼95% relative to chondritic Ir proportions. A similar depletion in Os (∼90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ∼1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ∼65 Ma, the effective diffusivities are ∼10−13 cm2/s, much smaller than that of soluble cations in pore waters (∼10−6 cm2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios ≥1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ∼25% of the K-T impactor’s Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.  相似文献   

3.
The marine osmium isotope record   总被引:3,自引:0,他引:3  
Over the past decade the marine osmium isotope record has been developed into a new tracer in palaeoceanographic research. Several analytical developments, particularly in the past few years, have significantly increased our ability to study the behaviour of osmium in the surficial environment. The 187Os/188Os and osmium concentration of seawater, river water, rain, and hydrothermal vent fluids have been measured directly. Recently, the behaviour of osmium in estuaries–critical for estimating the marine residence time of osmium–has been studied. Our knowledge of the surficial osmium cycle has thus significantly improved. In addition, reconstructions of past variations in the marine 187Os/188Os recently have been extended back into the Mesozoic. This review attempts to summarize our current understanding of the marine osmium system–present and past. The 187Os/188Os of seawater during the Cenozoic to first order mimics the marine 87Sr/86Sr record. It is therefore tempting to interpret both records as reflecting increased input of radiogenic osmium and strontium resulting from enhanced continental weathering regulated by climatic/tectonic processes. However, the marine osmium isotope system differs fundamentally from the marine strontium isotope system. This review emphasizes three important differences. First, large impacts are capable of resetting the 187Os/188Os to unradiogenic values without significantly affecting the marine strontium system. Second, organic‐rich sediments are characterized by high 187Re/188Os; resulting 187Os/188Os ingrowth‐trajectories are similar to the average slope of the Cenozoic 187Os/188Os seawater record. Trends towards more radiogenic 187Os/188Os seawater therefore can be caused by weathering of organic‐rich sediments at a constant rate. Third, the marine residence time of osmium is sufficiently short to capture short‐periodic (glacial‐interglacial) fluctuations that are inaccessible to the buffered marine strontium isotope system. This offers the opportunity to discriminate between high‐frequency (climatic) and low‐frequency (tectonic) forcing.  相似文献   

4.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

5.
The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268–0.892) together with their respective Sr–Nd–Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle “hybridization”, metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5–25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re–Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu–Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.  相似文献   

6.
Ultramafic xenoliths entrained in the late Miocene alkali basalts and basanites from NW Turkey include refractory spinel-harzburgites and dunites accompanied by subordinate spinel-lherzolites. Whole-rock major and trace element characteristics indicate that the xenoliths are mostly the solid residues of varying degrees of partial melting (~4–~15%), but some have geochemical signatures reflecting the processes of melt/rock interaction. Mantle-normalized trace element patterns for the peridotites vary from LREE-depleted to strongly LREE-enriched, reflecting multistage mantle processes from simple melt extraction to metasomatic enrichment. Rhenium and platinum group element (PGE) abundances and 187Os/188Os systematics of peridotites were examined in order to identify the nature of the mantle source and the processes effective during variable stages of melt extraction within the sub-continental lithospheric mantle (SCLM). The peridotites are characterized by chondritic Os/Ir and Pt/Ir ratios and slightly supra-chondritic Pd/Ir and Rh/Ir ratios, representing a mantle region similar in composition to the primitive mantle (PM). Moderate enrichment in PPGE (Pd–Pt–Rh)/IPGE (Ir–Os–Ru) ratios with respect to the PM composition in the metasomatized samples, however, reflects compositional modification by sulphide addition during possible post-melting processes. The 187Os/188Os ratios of the peridotites range from 0.11801 to 0.12657. Highly unradiogenic Os isotope compositions (γOs at 10 Ma from –7.0 to –3.2) in the chemically undisturbed mantle residues are accompanied by depletion in Re/Os ratios, suggesting long-term differentiation of SCLM by continuous melt extraction. For the metasomatized peridotites, however, systematic enrichments in PPGE and Re abundances, and the observed positive covariance between 187Re/188Os and γOs can most likely be explained by interaction of solid residues with basaltic melts produced by melting of relatively more radiogenic components in the mantle. Significantly, the wide range of 187Os/188Os ratios characterizing the entire xenolith suite seems to be consistent with multistage evolution of SCLM and suggests that parts of the lithospheric mantle contain materials that have experienced ancient melt removal (~1.3 Ga) which created time-integrated depletion in Re/Os ratios; in contrast, some other parts display evidence indicative of recent perturbation in the Re–Os system by sulphide addition during interaction with metasomatizing melts.  相似文献   

7.
Paired analyses of Os isotope composition and concentration of bulk sediment and leachable Os in a metalliferous pelagic clay sequence from the North Pacific, ODP Site 886C, are used to reconstruct the marine Os isotope record and the particulate meteoritic Os flux between 65.5 and 78 Ma. Measured 187Os/188Os of bulk sediments ranges from approximately 0.64 to 0.32 and those of leach analyses are very similar to bulk analyses. Hydrogenous Os dominates the sedimentary Os inventory throughout most of the studied interval. As a result the measured 187Os/188Os of leachable Os approximates that of contemporaneous seawater. The ODP 886C record shows rising 187Os/188Os in the deepest portion of the core, with a local maximum of 0.66 close to 74 Ma. The 67-72 Ma portion of the record is characterized by nearly constant 187Os/188Os ratios close to 0.6. The structure of the marine Os isotope record from ODP 886C differs markedly from the seawater 87Sr/86Sr curve, which rises monotonically throughout the time interval studied here. Calculated particulate meteoritic Os fluxes are between 0.5 and 2 pg cm−2 kyr−1 throughout most of the studied interval. Two discrete intervals of the core (one of which is within Cretaceous Tertiary, boundary KTB interval) are characterized by higher fluxes of meteoritic Os. Excluding these two intervals, the average background flux of particulate meteoritic Os is roughly half of that estimated from analyses of Cenozoic marine sediments. These are the first Os isotope data to provide evidence of resolvable temporal variations in the background flux of particulate meteoritic material to the Earth.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(23-24):4005-4012
Previous studies have shown that 187Os/188Os in seawater has become increasingly radiogenic over the last 40 Ma in a manner analogous to strontium. This rapid rise in the marine 187Os/188Os over the last 17 Ma has been attributed to an increase in the bulk silicate weathering rates resulting from the rise of the Himalayas and/or selective weathering and erosion of highly radiogenic organic rich ancient sediments. The key test of this hypothesis is the 187Os/188Os and the total osmium concentration of the Himalayan rivers. We report the concentration and isotopic composition of osmium in the Ganges, the Brahmaputra, and the Indus rivers. The 187Os/188Os of the Ganges close to its source (at Kaudiyal, 30°05′N, 78°50′E) is 2.65 and [Os] = 45 fM/kg. A second sample of the lower reaches of the Ganges at Patna (25°30′N, 85°10′E) gives 187Os/188Os =1.59 and [Os] = 171 fM/kg. The 187Os/188Os of the Brahmaputra at Guwahati (26°10′N, 91°58′E) is 1.07 and [Os] = 52 fM/kg. A sample of the Indus (Besham, 34°55′N, 72°51′E) has a 187Os/188Os of 1.2 and [Os] = 59 fM/kg. We infer that the Himalayas do not provide either a high flow of osmium or a highly radiogenic osmium component to the oceans. The overall trend for osmium and strontium could be explained by a regularly increasing input of global continental weathering sources but the Himalayas themselves appear not to be the dominant source.  相似文献   

9.
Spinel lherzolite xenoliths from Mont Briançon, French Massif Central, retain evidence for multiple episodes of melt depletion and melt/fluid infiltration (metasomatism). Evidence for primary melt depletion is still preserved in the co-variation of bulk-rock major elements (MgO 38.7-46.1 wt.%; CaO 0.9-3.6 wt.%), and many samples yield unradiogenic bulk-rock Os isotope ratios (187Os/188Os = 0.11541-0.12626). However, many individual xenoliths contain interstitial glasses and melt inclusions that are not in equilibrium with the major primary minerals. Incompatible trace element mass balance calculations demonstrate that metasomatic components comprise a significant proportion of the bulk-rock budget for these elements in some rocks, ranging to as much as 25% of Nd and 40% of Sr Critically, for Re-Os geochronology, melt/fluid infiltration is accompanied by the mobilisation of sulfide. Consequently, bulk-rock isotope measurements, whether using lithophile (e.g. Rb-Sr, Sm-Nd) or siderophile (Re-Os) based isotope systems, may only yield a perturbed and/or homogenised average of these multiple events.Osmium mass balance calculations demonstrate that bulk-rock Os in peridotite is dominated by contributions from two populations of sulfide grain: (i) interstitial, metasomatic sulfide with low [Os] and radiogenic 187Os/188Os, and (ii) primary sulfides with high [Os] and unradiogenic 187Os/188Os, which have been preserved within host silicate grains and shielded from interaction with transient melts and fluid. The latter can account for >97% of bulk-rock Os and preserve geochronological information of the melt from which they originally precipitated as an immiscible liquid. The Re-depletion model ages of individual primary sulfide grains preserve evidence for melt depletion beneath the Massif Central from at least 1.8 Gyr ago despite the more recent metasomatic event(s).  相似文献   

10.
This study evaluates in detail the mineral chemistry, whole-rock and mineral separate Os-isotope compositions of distinct platinum-group mineral (PGM) assemblages in an isolated chromitite pod at Harold's Grave which occurs in mantle tectonite in the Shetland Ophiolite Complex (SOC), Scotland. This was the first ophiolite sequence worldwide that was shown to contain ppm levels of all six platinum-group elements (PGE) in podiform chromitite, including the contrasting type localities found here and at Cliff. At Harold's Grave the primary PGM assemblage is composed mainly of laurite and/or Os-rich iridium and formed early together with chromite, whereas the secondary PGM assemblage dominated by laurite, Os-rich laurite, irarsite, native osmium and Ru-bearing pentlandite is likely to reflect processes including in-situ serpentinization, alteration during emplacement and regional greenschist metamorphism. The osmium isotope data define a restricted range of ‘unradiogenic’ 187Os/188Os values for coexisting laurite and Os-rich alloy pairs from ‘primary’ PGM assemblage (0.12473–0.12488) and similar ‘unradiogenic’ 187Os/188Os values for both ‘primary’ and ‘secondary’ PGM assemblages (0.1242 ± 0.0008 and 0.1245 ± 0.0006, respectively), which closely match the bulk 187Os/188Os value of their host chromitite (0.1240 ± 0.0006). The unprecedented isotopic similarity between primary or secondary PGM assemblages and chromitite we report suggests that the osmium isotope budget of chromitite is largely controlled by the contained laurite and Os-rich alloy. This demonstrates that closed system behaviour of the Re–Os isotope system is possible, even during complex postmagmatic hydrothermal and/or metamorphic events. The preserved mantle Os-isotope signatures provide further support for an Enstatite Chondrite Reservoir (ECR) model for the convective upper mantle and are consistent with origin of the complex as a Caledonian ophiolite formed in a supra-subduction zone setting shortly before obduction.  相似文献   

11.
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism.  相似文献   

12.
Analyses of enriched mantle (EM)-basalts, using lithophile element-based isotope systems, have long provided evidence for discrete mantle reservoirs with variable composition. Upon partial melting, the mantle reservoir imparts its isotopic fingerprint upon the partial melt produced. However, it has increasingly been recognised that it may not be simple to delimit these previously well-defined mantle reservoirs; the “mantle zoo” may contain more reservoirs than previously envisaged.Here we demonstrate that a simple model with varying contributions from two populations of compositionally distinct mantle sulphides can readily account for the observed heterogeneities in Os isotope systematics of such basalts without additional mantle reservoirs. Osmium elemental and isotopic analyses of individual sulphide grains separated from spinel lherzolites from Kilbourne Hole, New Mexico, USA demonstrate that two discrete populations of mantle sulphide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os] and low [Re] with unradiogenic, typically sub-chondritic 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulphides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic 187Os/188Os ([Os] typically ? 1-2 ppm, 187Os/188Os ? 0.3729; this study). This population is thought to represent metasomatic sulphide.Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulphide ([Os] ? 37 ppm; this study). During the early stages of partial melting, supra-chondritic interstitial sulphides are mobilised and incorporated into the melt, adding their radiogenic 187Os/188Os signature. Only when sulphides armoured within silicates are exposed to the melt through continued partial melting will enclosed sulphides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element data for whole rocks are also consistent with this scenario. The sequence of (i) addition of all of the metasomatic sulphide, followed by (ii) the incorporation of small amounts of armoured sulphide can thus account for the range of both [Os] and 187Os/188Os of EM-basalts worldwide without the need for contributions from additional silicate mantle reservoirs.  相似文献   

13.
O, Hf and Os isotope data are presented for lavas from the highly depleted Tonga–Kermadec arc. O isotope values overlap with those of MORB limiting the amount of interaction with the arc crust. δ18O does not increase northwards as would be expected from the ~ 4 fold increase in subduction rate if slab-derived fluids had high 18O/16O ratios. Thus, the overall northward decrease in HFSE concentrations likely reflects depletion due to prior melt extraction, not increasing extents of melting. Hf isotopes are strongly negatively correlated with Be isotopes consistent with mixing of subducted pelagic sediment into the mantle wedge and do not require Hf to be fluid mobile. With the exception of a boninite from the north Tongan trench, the northern Tonga lavas do not overlap the Hf isotope composition of either the Samoan plume or the subducting Louisville volcaniclastic sediments. Thus, the Pb isotope signatures in these lavas must have been added by fluids and sediment melts derived from the Louisville volcaniclastics with minimal mobilisation of Hf. This suggests conservative behaviour for this element due to the formation of residual zircon during partial melting of the subducted sediments. 187Os/188Os ranges from 0.1275 to 0.4731 and the higher Os isotope ratios reflect the sensitivity of this system to even minor interaction with altered arc crust. Conversely, the lowest Os ratios are subchondritic and indicate that transfer of radiogenic Os from the slab is not all pervasive and provide an important constraint on the composition of the mantle wedge. Remarkably, the least radiogenic sample is a dacite demonstrating that evolved magmas can develop by fractionation from mantle-derived magmas with minimal interaction with the arc crust.  相似文献   

14.
Rhenium (Re) is one of the least abundant elements in Earth, averaging 0.28 ppb in the primitive mantle. The unique occurrence of rheniite ReS2 (74.5 wt% of Re) in Kudryavy volcano precipitates raises questions about recycling of Re-rich reservoirs within the Kurile-Kamchatka volcanic Island arc setting. The sources of this unique Re enrichment have been inferred from studies of Re-Os isotope systematic and trace elements in volcanic gases, sulphide precipitates and host volcanic rocks. The fumarolic gas condensates are enriched in hydrophile trace elements relative to fluid-immobile elements and exhibit high Ba/Nb (133-204), Rb/Y (16-406) and Th/Zr (0.01-0.25) ratios. They are characterised by high Re (7-210 ppb) and Os abundances (0.4-0.9 ppb), with 187Os/188Os ratios in a range 0.122-0.152. This Os isotopic compositional range is similar to that of the peridotite xenoliths from the metasomatised mantle wedge above the subducted Pacific plate, the radiogenic isotopic signature of which is probably due to radiogenic addition from a slab-derived fluid.Re- and Os-rich sulphide and oxide minerals precipitate from volcanic gases within fumarolic fields. Molybdenite (MoS2), powellite (CaMoO4) and cannizzarite (Pb4Bi6S13) contain 1.5-1.7 wt%, 10 ppm, and 65-252 ppb of Re, respectively. Both molybdenite and rheniite contain normal Os concentrations, with total Os abundances in a range from 0.6 to 3.1 ppm for molybdenite, and 2.3-24.3 ppb for the rheniite samples. Repeated analyses of osmium isotope ratios for two rheniite samples form a best-fit line with an initial 187Os/188Os ratio of 0.32 ± 0.15 and an age of 79 ± 11 yr, which is the youngest age ever measured in natural samples. The high Re contents in molybdenite and rheniite led to high radiogenic 187Os values, even in the limited period of time, with 187Os/188Os ratios up to 3.3 for molybdenite and up to 4.4 for rheniite.The Os isotopic compositions of andesite-basaltic rocks from the Kudryavy volcano (187Os/188Os up to 0.326) are more radiogenic than those of residual peridotites and fumarolic gas condensates that are mainly constituted from magmatic vapor. Such radiogenic values can be attributed either to the addition of a radiogenic Os-rich subduction component to the depleted mantle, or to the assimilation of older dacitic caldera walls (187Os/188Os = 0.6) during arc magma ascent and emplacement. The latter hypothesis is supported by the correlation between 187Os/188Os ratio and indicators of fractionation such as MgO or Ni, and by low contents of potentially hydrophile trace elements such as Ba, Rb and Th relative to fluid-immobile elements such as Nb, Zr and Y. The high Re flux in the Kudryavy volcano (estimated at ∼46 kg/yr) can be explained by remobilisation of Re by Cl-rich water from an underplated mantle wedge and subducted organic-rich sediments of the Pacific plate.  相似文献   

15.
《China Geology》2021,4(4):593-599
The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution. The whole-rock Sr-Nd-Pb-Hf isotopes are attributed to a two-component mixing between depleted and enriched mantle sources, while the major element variations are controlled by the fractional crystallization of olivine and clinopyroxene. However, in this study, the new Os isotopic data proposes an opposite model for the Cenozoic basalts in northern marginal region of the North China Craton. In this model, the Jining basalts were contaminated by the Archean mafic rocks during the magma storage and ascent. The crustal contamination process is supported by (1) the highly radiogenic Os isotopic compositions, and (2) the positive correlation between 187Os/188Os and 1/Os of the Jining basalts. By modeling the Os isotopic composition of the basalts, an incorporation of < 10% mafic granulites/amphibolites to the parental magma can successfully explain the initial values of highly radiogenic Os. In contrast, the unradiogenic and uniform Os isotopic compositions of the Chifeng basalts suggest negligible crustal contamination. Os isotopic data acts as an indicator of crustal contamination during magma evolution, providing us a novel insight into the evolution of the intra-continental OIB-like basalts worldwide.©2021 China Geology Editorial Office.  相似文献   

16.
Basanites and nephelinites from the Tertiary Rhön area (Germany), which are part of the Central European Volcanic Province (CEVP), have high MgO, Ni and Cr contents and prominent garnet signatures indicating that they represent near-primary magmas formed by melting of a CO2-bearing peridotitic mantle source at high pressure. The Pb and Hf isotope (and previously published Nd and Sr isotope) ratios of the Rhön lavas are rather uniform, whereas the Os isotope composition is highly variable. For the most primitive basanites, Pb, Os and Hf isotope compositions fall within the range of enriched MORB and some OIB. Other basanites and nephelinites with low Os concentrations have distinctly more radiogenic Os (187Os/188Os: 0.160–0.469) isotope compositions, which are inferred to originate from crustal contamination. The samples with the highest Os concentrations have the lowest Os isotope ratios (187Os/188Os(23 Ma): 0.132–0.135), and likely remain unaffected by crustal contamination. Together with their fairly depleted Sr, Nd and Hf isotope ratios, the isotopic composition of the Rhön lavas suggests derivation from an asthenospheric mantle source. Prominent negative K and Rb anomalies, however, argue for melting amphibole or phlogopite-bearing sources, which can only be stable in the cold lithosphere. We therefore propose that asthenospheric melts precipitated at the asthenosphere-lithosphere thermal boundary as veins in the lithospheric mantle and were remelted or incorporated after only short storage times (about 10–100 million years) by ascending asthenospheric melts. Due to the short residence time incorporation of the vein material imposes the prominent phlogopite/amphibole signature of the Rhön alkaline basalts but does not lead to a shift in the isotopic signatures. Melting of the lithospheric mantle cannot strictly be excluded, but has to be subordinate due to the lack of the respective isotope signatures, in good agreement with the fairly thin lithosphere observed in the Rhön area. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature portions incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.  相似文献   

17.
Dunitic xenoliths from late Palaeogene, alkaline basalt flows on Ubekendt Ejland, West Greenland contain olivine with 100 × Mg/(Mg + Fe), or Mg#, between 92.0 and 93.7. Orthopyroxene has very low Al2O3 and CaO contents (0.024–1.639 and 0.062–0.275 wt%, respectively). Spinel has 100 × Cr/(Cr + Al), or Cr#, between 46.98 and 95.67. Clinopyroxene is absent. The osmium isotopic composition of olivine and spinel mineral separates shows a considerable span of 187Os/188Os values. The most unradiogenic 187Os/188Os value of 0.1046 corresponds to a Re-depletion age of ca. 3.3 Gy, while the most radiogenic value of 0.1336 is higher than present-day chondrite. The Os isotopic composition of the xenoliths is consistent with their origin as restites from a melt extraction event in the Archaean, followed by one or more subsequent metasomatic event(s). The high Cr# in spinel and low modal pyroxene of the Ubekendt Ejland xenoliths are similar to values of some highly depleted mantle peridotites from arc settings. However, highly depleted, arc-related peridotites have higher Cr# in spinel for a given proportion of modal olivine, compared to cratonic xenolith suites from Greenland, which instead form coherent trends with abyssal peridotites, dredged from modern mid-ocean ridges. This suggests that depleted cratonic harzburgites and dunites from shallow lithospheric mantle represent the residue from dry melting in the Archaean.  相似文献   

18.
High precision Os isotope analysis of young marine manganese nodules indicate that whereas the composition of modern seawater is radiogenic with respect to 187Os/188Os, it has 186Os/188Os that is within uncertainty of the chondritic value. Marine Mn nodule compositions thus indicate that the average continental source of Os to modern seawater had long-term high Re/Os compared to Pt/Os. Analyses of loess and freshwater Mn nodules support existing evidence that average upper continental crust (UCC) has resolvably suprachondritic 186Os/188Os, as well as radiogenic 187Os/188Os. Modeling the composition of seawater as a two-component mixture of oceanic/cosmic Os with chondritic Os compositions and continentally-derived Os demonstrates that, insofar as estimates for the composition of average UCC are accurate, congruently weathered average UCC cannot be the sole continental source of Os to seawater. Our analysis of four Cambrian black shales confirm that organic-rich sediments can have 187Os/188Os ratios that are much higher than average UCC, but 186Os/188Os compositions that are generally between those of chondrites and average-UCC. Preferential weathering of black shales can result in dissolved Os discharged to the ocean basins that has a much lower 186Os/188Os than does average upper crust. Modeling the available data demonstrates that augmentation of estimated average UCC compositions with less than 0.1% additional black shale and 1.4% additional ultramafic rock can produce a continental end-member Os isotopic composition that satisfies the requirements imposed by the marine Mn nodule data. The interplay of these two sources provides a mechanism by which the 187Os/188Os of seawater can change as sources and weathering conditions change, yet seawater 186Os/188Os varies only minimally.  相似文献   

19.
Chromitites enclosed within metasomatised Finero phlogopite peridotite (FPP) contain accessory platinum-group minerals, base metal (BM) sulfides, baddeleyite, zircon, zirconolite, uraninite and thorianite. To provide new insights into mantle-crustal interaction in the Finero lithosphere this study evaluates (1) the mineral chemistry and Os-isotope composition of laurite, (2) the crystal morphology, internal structure, in-situ U-Pb, trace-element and Hf-isotope data of zircon from two chromitite localities at Alpe Polunia and Rio Creves. The osmium isotope results reveal a resticted range of ‘unradiogenic’ 187Os/188Os values for laurite at Alpe Polunia (0.1247–0.1251, mean 0.1249 ± 0.0001). Re-Os model ages (TRD) of laurite reflect an Early Paleozoic partial melting event (ca 450 Ma or older), presumably before the Variscan orogeny. The Os isotopic composition of laurite/chromitite probably preserves their mantle signature and was not affected by later metasomatic processes. U-Pb and Hf-isotope data show that the Finero chromitites have distinct zircon populations with peculiar morphology, internal cathodoluminescence textures, trace-element composition and an overall U-Pb age span from ∼310 Ma to 190 Ma. Three age peaks at Rio Creves (220 ± 4 Ma, 234.2 ± 4.5 Ma and 277.5 ± 3.2 Ma) are consistent with a prolonged formation and multistage zircon growth, in contrast to the common assumption of a single metasomatic event during chromitite formation. The trace-element signatures of zircons are comparable with those of mantle-derived zircons from alkaline ultramafic rocks, supporting the carbonatitic nature of the metasomatism. Hf-isotope compositions of the Finero zircons, with εHf values ranging mainly from −3 to +1, are consistent with crustal input during metasomatism and could indicate that the parental melts/fluids were derived from a relatively old source; the minimum estimates for Hf model ages are 0.8–1.0 Ga. Our findings imply that mantle rocks and metasomatic events at Finero have a far more complex geological history than is commonly assumed.  相似文献   

20.
New analyses of highly siderophile elements (HSE; Re, Os, Ir, Ru, Pt, and Pd) obtained by Carius tube digestion isotope dilution inductively coupled plasma mass-spectrometry (ID-ICPMS) technique are reported for 187Os-enriched 2.8 Ga komatiites from the Kostomuksha greenstone belt. As a result of a significant improvement in the yield over our previous digestions by the NiS fire-assay technique, these komatiites have now been shown to contain 22 to 25% more Os, Ir, and Pt and 34% more Ru. The emplaced komatiite lavas at Kostomuksha thus had siderophile element abundances comparable to those of the Abitibi belt. The discrepancies observed between the two techniques are interpreted to be the result of incomplete digestion of HSE carriers (particularly chromite) during the NiS fire-assay procedure. Our results for UB-N peridotite reference material agree well with those obtained by the high-pressure ashing digestion ID-ICPMS technique reported in the literature. Two types of komatiite lavas have been distinguished in this study based on the IPGE (Os, Ir, and Ru) behavior during lava differentiation. The Kostomuksha type is unique and is characterized by an incompatible behavior of IPGEs, with bulk solid-liquid partition coefficients for IPGEs being close to those for olivine. Cumulate zones in this type of komatiite lava occupy <20% of the total thickness of the flows. The Munro type exhibits a compatible behavior of IPGEs during lava differentiation. The cumulate zone in this type of komatiite occupies >20% of the total thickness of the flows. The calculated bulk partition coefficients indicate that, as with the other Munro-type komatiite lavas, the bulk cumulate contained an IPGE-rich minor phase(s) in addition to olivine. The non-CI chondritic HSE pattern for the source of the Kostomuksha komatiites calculated here is similar to that of Abitibi komatiites and to average depleted spinel lherzolite (ADSL) and supports the hypothesis of a non-CI chondritic HSE composition of the Earth’s mantle. The absolute HSE abundances in the source of the Kostomuksha komatiite have been demonstrated to be comparable to those of the source of Abitibi komatiites, even though the two komatiites contrast in their Os isotopic compositions. This supports the earlier hypothesis that if core-mantle interaction produced the 187Os/188Os radiogenic signature in the Kostomuksha source, it must have occurred in the form of isotope exchange at the core-mantle boundary. Other explanations of the radiogenic Os signature are similarly constrained to conserve the elemental abundance pattern in the mantle source of Kostomuksha komatiites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号