首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the geologic history and position of the North China craton in the Paleoproterozoic Columbia supercontinent has proven elusive. Paleoproterozoic orogenic episodes (2.00–1.85 Ga) are temporally associated with ultimate stabilization of the North China craton (NCC), followed by the development of extensive craton-wide rift systems at 1.85–1.80 Ga. The age difference between the sedimentary cover and the metamorphic basement is up to 500–700 Ma, suggesting that uplift and doming of cratonic basement occurred in the latest Paleoproterozoic. Mafic dike swarms (1.80–1.77 Ga) and anorogenic magmatism (1.80–1.70 Ga) record the extensional breakup and dispersal of the North China craton during this stage. The late Paleoproterozoic tectonic framework and geological events documented provide important constraints for reconstruction of the NCC within the Late Paleoproterozoic supercontinent of Columbia.An east-west striking thousand kilometer long belt of khondalites (granulite facies metapelites) stretches along the northern margin of the North China craton, on the cratonward side of the Northern Hebei orogenic belt. This granulite belt includes Mg–Al (sapphirine bearing) granulites that reached ultrahigh-temperature “peak” metamorphic conditions of  1000 °C at 10 kbars at 1927 ± 11 Ma. Following peak ultrahigh-temperature conditions, the rocks underwent initial isobaric cooling and subsequent isothermal decompression, and these trajectories are interpreted to be part of an overall anti-clockwise P-T evolution indicating that the northern margin of the craton experienced continental collision at 1.93–1.92 Ga. The position of the khondalite belt south of the Northern Hebei orogenic belt makes it analogous to Tibet, a continental collision-related plateau characterized by double crustal thicknesses and granulite facies metamorphism at depth. We suggest that the tectonic evolution of the NCC during this period was closely related to the assembly and break-up of the Columbia supercontinent, and that the NCC was adjacent to the Baltic and Amazonian cratons in the period 2.00–1.70 Ga. Craton-wide extension occurred within 100–150 Ma of collision along the northern margin of the craton at 1.93–1.92 Ga. It is concluded that mantle upwellings are chiefly responsible for the breakup of the NCC from the Paleoproterozoic supercontinent.  相似文献   

2.
The Archaean and Early–Middle Proterozoic (1.8–1.5 Ga) terranes of the North Australian Craton and the South Australian Craton are separated by 400 km of ca. 1.33–1.10-Ga orogenic belts and Phanerozoic sediments. However, there is a diverse range of geological phenomena that correlate between the component terranes of the two cratons and provide evidence for a shared tectonic evolution between approximately 1.8 and 1.5 Ga. In order to honour these correlations, we propose a reconstruction in which the South Australian Craton is rotated 52° counterclockwise about a pole located at 136°E and 25°S (present-day coordinates), relative to its current position. This reconstruction aligns the ca. 1.8–1.6-Ga orogenic belts preserved in the Arunta Inlier and the Gawler Craton and the ca. 1.6–1.5-Ga orogenic belts preserved in the Mount Isa Block and the Curnamona Province. Before 1.5 Ga, the South Australian Craton was not a separate entity but part of a greater proto-Australian continent which was characterised by accretion along a southward-migrating convergent margin (ca. 1.8–1.6 Ga) followed by convergence along the eastern margin (ca. 1.6–1.5 Ga). After 1.5 Ga, the South Australian Craton broke away from the North Australian Craton only to be reattached in its current position during the ca. 1.33–1.10 Ga-Albany–Fraser and Musgrave orogenies.  相似文献   

3.
The presence of 1.52–1.50 Ga charnockites from the anorthosite–mangerite–charnockite–granite (AMCG) Mazury complex in southern Lithuania and NE Poland, in the western East European Craton (EEC) is revealed by secondary ion mass-spectrometry (SIMS) and EPMA geochronology. Early 1.85–1.82 Ga charnockites are related to major orogeny in the region whereas the newly studied charnockites intrude the already consolidated crust. The 1.52–1.50 Ga charnockite magmatism (SIMS data on zircon) was followed by high-grade metamorphism (EPMA data on monazite), which strongly affected the surrounding rocks. The 1.85–1.81 Ga zircon cores in Lazdijai and 1.81 Ga monazite domains in the Lanowicze charnockites represent the protolith age of a volcanic island arc. The 1.52–1.50 Ga charnockite magmatism and metamorphism are likely related to the distal, Danopolonian, orogeny further to the west, at the margin of Baltica. The c.1.52–1.50 Ga AMCG magmatism and metamorphism in the western EEC as well as the paired accretionary-rapakivi suites in Amazonia, may be the inboard manifestations of the same early Mesoproterozoic orogeny associated with the juxtaposition of Amazonia and Baltica during the amalgamation of the supercontinent Columbia.  相似文献   

4.
The Neoproterozoic Earth was shaped largely by the Grenvillian and Pan-African orogenies. Out of these, the Grenvillian orogeny has long been regarded to be of minor nature in terms of global-scale orogenic episodes, whereas the Pan-African orogeny has been widely recognized in many continental fragments, although not in major parts of Asia. Based on chronological information in zircons from major river mouths across several important terrains of the globe, we show here that the Grenvillian orogeny contributed significantly to the formation of the continental crust. The time period between 0.6 Ga and 0.8 Ga marked the climax at the dawn of the Pan-African orogeny. Continental crust formed in this period is concentrated in the Pan-African orogenic belts widely across the globe. These regions were widespread over the half hemisphere of the globe, and were subsequently reduced in size after they moved to form Laurasia. The normalized frequency distribution of zircon ages from river-mouth sand over the world clearly demonstrates that Neoproterozoic and (0.9–0.6 Ga) and Grenvillian (1.3–1.0 Ga) peaks define the largest population. This means that extensive subduction, and hence active plate tectonics, might have operated through these periods. The zircon study has also brought to light new regions of the Grenvillian orogenic belts, particularly in the continents which are now covered by thick Phanerozoic sedimentary basins. Based on the new locations of Grenvillian orogens identified in this study, and using the distribution patterns as a marker bed, we propose revised paleogeographic configurations of the Rodinia and Gondwana supercontinents.Our results demonstrate that the Neoproterozoic was the most active period of crust formation in the Earth. The cold basins, formed right after the assembly of Rodinia, exhibit a basin chain fringing the northern periphery of Rodinia, which turned into sites of mantle upwellings and led to the rifting and separation of the supercontinental assembly. The continents then moved northwards after the formation of Gondwana at ca. 540 Ma, and enlarged the northern half of the supercontinent Pangea since 250 Ma.Based on the results, we also evaluate the role of supercontinents in the mechanism of generation of superplumes addressing the enigma that the coldest mantle right above the Core–Mantle Boundary turns to the hottest one over a period of several hundreds of million years. Slab graveyard formed by the Pan-African subduction can be imaged through P-wave tomography. We postulate that the high-velocity anomaly in the D” layer underneath Gondwana has now transformed to the low-V regions to generate the African superplume. The tectonic history of solid Earth in the Phanerozoic seems to be controlled by the slab graveyards formed by the Grenvillian orogeny ca. 1.0 Ga.  相似文献   

5.
Systematic geochronologic, geochemical, and Nd isotopic analyses were carried out for an early Paleoproterozoic high-K intrusive complex exposed in southwestern Tarim, NW China. The results provide a better understanding of the Paleoproterozoic tectonic evolution of the Tarim Block. Zircon U–Pb age dating indicates two Paleoproterozoic magmatic episodes occurring at ca. 2.41 Ga and ca. 2.34 Ga respectively, which were followed by a ca. 1.9 Ga metamorphic event. The 2.41 Ga granodiorite–adamellite suite shares characteristics of late to post-orogenic metaluminous A-type granites in its high alkalinity (Na2O + K2O = 7.6–9.3%), total REE (410–788 ppm), Zr (370–660 ppm), and Y (21.7–58.4 ppm) contents. εNd(t) values for the suite range from − 3.22 to − 4.71 and accordingly the Nd modal ages (T2DM) vary between 3.05 Ga and 3.17 Ga. Based on geochemical data, the 2.34 Ga suite can be subdivided into two sub-suites, namely A-type and S-type. However, both types have comparable Nd isotope compositions (εNd(t) ≈ − 0.41 to − 2.08) and similar narrow T2DM ranges (2.76–2.91 Ga).Geochemical and Nd isotopic data for the high-K intrusive complex, in conjunction with the regional geological setting, suggest that both the 2.41 Ga suite and the 2.34 Ga A-type sub-suite might have been produced by partial melting of the Archean mafic crust in a continental rift environment. The S-type sub-suite is thought to have formed by partial melting of felsic pelites and/or metagreywackes recycled from Archean crust (TTG?). Gabbro enclaves with positive εNd(t) value (2.15) have been found to be intermingling within the 2.34 Ga suite; ca. 2.34–2.36 Ga gabbroic dykes and adamellites have previously been documented in eastern Tarim. These observations indicate that the high-K intrusions may reflect the emergence of depleted mantle upwelling beneath the Tarim Block at that time. We suggest a three-stages model for the Precambrian crustal evolution in the Tarim Block: (1) the formation of proto-crust (TTG) by ca. 2.5 Ga, (2) episodes of felsic magmatism possibly occurring in continental rift environments at ca. 2.41 Ga and ca. 2.34–2.36 Ga, and (3) ca. 1.9 Ga metamorphism that may represent the solidification of the Precambrian basement of the Tarim Block.  相似文献   

6.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

7.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

8.
Steady decline in the percentage of 235U in terrestrial uranium made natural fission impossible after about 1.8 Ga.Fission before 1.8 Ga disturbed the lead isotope system at various places worldwide,su...  相似文献   

9.
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

10.
W.G. Ernst   《Gondwana Research》2007,11(1-2):38
In the early Earth, accretionary impact heating, including collision with a large, Mars-sized object, decay of short-lived radioisotopes, and (after an initial thermal run-up) continuous segregation of the liquid Fe–Ni core resulted in extensive the melting of the silicate mantle and in the formation of a near-surface magma mush ocean. Progressive, continuous degassing and chemical–gravitational differentiation of the crust–mantle system accompanied this Hadean stage, and has gradually lessened during the subsequent cooling of the planet. Mantle and core overturn was vigorous in the Hadean Earth, reflecting deep-seated chemical heterogeneities and concentrations of primordial heat. Hot, bottom-up mantle convection, including voluminous plume ascent, efficiently rid the planet of much thermal energy, but gradually decreased in importance with the passage of time. Formation of lithospheric scum began when planetary surface temperatures fell below those of basalt and peridotite solidi. Thickening and broadening of lithospheric plates are inferred from the post-Hadean rock record. Developmental stages of mantle circulation included: (a) 4.5–4.4 Ga, early, chaotic magma ocean circulation involving an incipient or pre-plate regime; (b) 4.4–2.7 Ga, growth of small micro-oceanic and microcontinental platelets, all returned to the mantle prior to 4.0 Ga, but increasing in size and progressively suturing sialic crust-capped lithospheric amalgams at and near the surface over time; (c) 2.7–1.0 Ga, assembly of cratons surmounting larger, supercontinental plates; and (d) 1.0 Ga–present, modern, laminar-flowing asthenospheric cells capped by gigantic, Wilson-cycle lithospheric plates. Restriction of komatiitic lavas to the Archean, and of ophiolite complexes ± alkaline igneous rocks, high-pressure and ultrahigh-pressure metamorphic terranes to progressively younger Proterozoic–Phanerozoic orogenic belts supports the idea that planetary thermal relaxation promoted the increasingly negative buoyancy of cooler oceanic lithosphere. The Thickening of oceanic plates enhanced the gravitational instability and the consequent overturn of the outer Earth as cold, top-down oceanic mantle convection. The scales and dynamics of deep-seated asthenospheric circulation, and of lithospheric foundering + shallow asthenospheric return flow evidently have evolved gradually over geologic time in response to the progressive cooling of the Earth.  相似文献   

11.
Seventy skarn-type gold deposits, including 1 super-large, 19 large and 24 medium-sized, are known from different geotectonic units of China. They contain a total resource of approximately 1000 t of gold (625 t in South China), and account for 20% of China's gold reserves. These skarn deposits are sited in collisional orogenic belts, fault-controlled magmatic belts and reactivated cratonic margins. All of the Chinese skarn gold provinces were affected by Phanerozoic collisional orogenesis. The timing of the metallogenic events and the spatial–temporal distribution of the Chinese skarn gold deposits indicates that they were formed during ore-forming processes linked to the transition from shortening to extension in the geodynamic evolution of a collision orogen, and not to subduction systems as is commonly advocated for porphyry copper systems around the Pacific Rim.  相似文献   

12.
Geochronology of detrital zircons and their overgrowths combined with whole-rock geochemical and Sm–Nd isotopic data can be used to distinguish different stages of sediment recycling and metamorphism during multiphase orogenic evolution. This approach is applied to the Paleoproterozoic sedimentary rocks of the Tampere and Pirkanmaa belts (southern Finland) in the center of the composite Svecofennian orogen.The lower part of the Tampere belt succession and bulk of the Pirkanmaa belt are characterized by turbidites whereas the upper part of the Tampere belt succession is dominated by 1.90–1.89 Ga mature arc-type volcanic rocks. Detrital zircon geochronology indicates that the Tampere and Pirkanmaa belts have a coeval 1.92–1.89 Ga depositional and tectonic history. Ages of pre-depositional zircon overgrowths vary from 1.91 Ga to 2.0 Ga with clusters at 1.92 Ga and 1.98 Ga. Within the Pirkanmaa belt, post-depositional zircon overgrowths indicate metamorphic culmination at c. 1885 Ma in the Vammala Ni-zone and at c. 1875 Ma in the northern part.The lower conglomerates and graywackes in the Tampere belt and their equivalents in the Pirkanmaa belt are rich both in Neoarchean and Paleoproterozoic grains, the latter ranging in age from 1.9 to 2.1 Ga. Compared to these, a sample from the Vammala Ni-zone has an exotic provenance with at least c. 1.90 Ga, 2.04–2.15 Ga, 2.38–2.48 Ga and 2.57–2.63 Ga components.A sedimentary recycling and tectonic model for the central Fennoscandia is proposed, in which the Paleoproterozoic Keitele + Bergslagen continent was formed during an unnamed orogeny at 1.98–1.97 Ga. The Archean Norrbotten microcontinent was attached to the continent at 1.97–1.93 Ga. Upper Kaleva turbidites, derived from the Lapland-Kola orogen in the north, were deposited before 1.92 Ga on a passive margin of the Archean Karelia craton. The Karelia craton collided with the Keitele + Bergslagen + Norrbotten continent at c. 1.92 Ga forming the Lapland-Savo orogen. Subsequent evolution led to rifting and break-up of the latter continent into two microcontinents in the hinterland. At 1.92–1.91 Ga the rift was developed into a subsiding passive margin of the Keitele microcontinent with voluminous turbidite deposition, now seen as graywackes in the Tampere, Pirkanmaa and Pohjanmaa (western Finland) belts. The turbidite material was derived from the rising Lapland-Savo orogen and included recycled Upper Kaleva, recycled (sandstones) and first-cycle 2.03–1.97 Ga detritus from Keitele, 1.93–1.92 Ga Savo arc material, as well as detritus from the Archean craton and its cover deposits. The collision between Karelia and Keitele caused a subduction reversal and the onset of Tampere arc volcanism at 1.90 Ga. Arc-derived materials started to deposit and were mixed with older sedimentary rocks, and trench-parallel distal turbidites from exotic source were being deposited in the accretionary wedge.  相似文献   

13.
Adakitic intrusive rocks of  430–450 Ma were discovered in the North Qilian orogenic belt, the western section of the Central Orogenic System (COS) in China. These adakitic rocks were lower crust melts rather than slab melts as indicated by their crustal Ce/Pb, Nb/U, Ti/Eu, and Nd/Sm ratios and radiogenically enriched (87Sr/86Sr)i of 0.7053–0.7066 and εNd(t) of − 0.9 to − 1.7. While they are all characterized by low Yb (< 1.1 ppm) and Y (< 11.5 ppm) abundances with high Sr/Y (> 65) and (La/Yb)N (> 13.7) ratios, these adakitic rocks are classified into the low-MgO–Ni–Cr and high-MgO–Ni–Cr groups. The low-MgO samples were derived from partial melting of thickened lower crust, whereas the high-MgO samples were melts from delaminated lower crust, which subsequently interacted with mantle peridotite upon ascent. Adakitic rocks from the adjacent North Qinling orogenic belt also originated from thickened lower crust at  430 Ma. In addition, the North Qilian and North Qinling orogenic belts both consist of lithological assemblages varying from subduction-accretionary complexes at south to central arc assemblages, which include adakitic rocks, then to backarc phases at north. Such a sequence reflects northward subduction of the Qilian and Qinling oceans. In these two orogenic belts, the occurrence of adakitic rocks of common origin and ages together with the similarities in tectonic configurations and lithological assemblages are considered to be the evidence for the continuity between eastern Qilian and western Qinling, forming a > 1000 km Early Paleozoic orogenic belt. In such a tectonic configuration, the Qilian and Qinling oceans that subducted from south possibly represent parts of the large “Proto-Tethyan Ocean”. This inference is supported by the coexistence of Early Paleozoic coral and trilobite specimens from Asia, America and Australia in the North Qilian orogenic belt. Post-400 Ma volcanic rocks occur in the North Qinling orogenic belt but are absent in the North Qilian orogenic belt, indicating that these two orogenic belts underwent distinct evolution history after the closure of the Proto-Tethyan Ocean ( 420 Ma).  相似文献   

14.
The Xiong'er volcanic belt, covering an area of more than 60,000 km2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the Paleo-Mesoproterozoic supercontinent Columbia. However, such interpretations cannot be accommodated by lithology, mineralogy, geochemistry and geochronology of the volcanic rocks in the belt. Lithologically, the Xiong'er volcanic belt is dominated by basaltic andesite and andesite, with minor dacite and rhyolite, different from rock associations related to continental rifts or mantle plumes, which are generally bimodal and dominated by mafic components. However, they are remarkably similar to those rock associations in modern continental margin arcs. In some of the basaltic andesites and andesites, amphibole is a common phenocryst phase, suggesting the involvement of H2O-rich fluids in the petrogenesis of the Xiong'er volcanic rocks. Geochemically, the Xiong'er volcanic rocks fall in the calc-alkaline series, and in most tectono-magmatic discrimination diagrams, the majority of the Xiong'er volcanic rocks show affinities to magmatic arcs. In the primitive mantle normalized trace-element diagrams, the Xiong'er volcanic rocks show enrichments in the LILE and LREE, and negative Nb–Ta–Ti anomalies, similar to arc-related volcanic rocks produced by the hydrous melting of metasomatized mantle wedge. Nd-isotope compositions of the Xiong'er volcanic rocks suggest that 5–15% older crust has been transferred into the upper lithospheric mantle by subduction-related recycling during Archean to Paleoproterozoic time. Available SHRIMP and LA-ICP-MS U–Pb zircon age data indicate that the Xiong'er volcanic rocks erupted intermittently over a protracted interval from 1.78 Ga, through 1.76–1.75 Ga and 1.65 Ga, to 1.45 Ga, though the major phase of the volcanism occurred at 1.78–1.75 Ga. Such multiple and intermittent volcanism is inconsistent with a mantle plume-driven rifting event, but is not uncommon in ancient and existing continental margin arcs. Taken together, the Xiong'er volcanic belt was most likely a Paleo-Mesoproterozoic continental magmatic arc that formed at the southern margin of the North China Craton. Similar Paleo-Mesoproterozoic continental magmatic arcs were also present at the southern and southeastern margins of Laurentia, the southern margin of Baltica, the northwestern margin of Amonzonia, and the southern and eastern margins of the North Australia Craton, which are considered to represent subduction-related episodic outbuilding on the continental margins of the Paleo-Mesoproterozoic supercontinent Columbia. Therefore, in any configuration of the supercontinent Columbia, the southern margin of the North China Craton could not have been connected to any other continental block as proposed in a recent configuration, but must have faced an open ocean whose lithosphere was subducted beneath the southern margin of the North China Craton.  相似文献   

15.
Northwestern Fujian Province is one of the most important Pre-Palaeozoic areas in the Cathaysia Block of South China. Metavolcano-sedimentary and metasedimentary rocks of different types, ages and metamorphic grades (granulite to upper greenschist facies) are present, and previously were divided into several Formations and Groups. Tectonic contacts occur between some units, whereas (deformed) unconformities have been reported between others. New SHRIMP U–Pb zircon ages presented here indicate that the original lithostratigraphy and the old “Group” and “Formation” terminology should be abandoned. Thus the “Tianjingping Formation” was not formed in the Archaean or Palaeoproterozoic, as previously considered, but must be younger than its youngest detrital zircons (1790 Ma) but older than regional metamorphism (460 Ma). Besides magmatic zircon ages of 807 Ma obtained from metavolcano-sedimentary rocks of the “Nanshan Formation” and 751–728 Ma for the “Mamianshan Group”, many inherited and detrital zircons with ages ranging from 1.0 to 0.8 Ga were also found in them. These ages indicate that the geological evolution of the study area may be related to the assembly and subsequent break-up of the Rodinia supercontinent. The new zircon results poorly constrain the age of the “Mayuan Group” as Neoproterozoic to early Palaeozoic (728–458 Ma), and not Palaeoproterozoic as previously thought. Many older inherited and detrital zircons with ages of 3.6, 2.8, 2.7, 2.6–2.5, 2.0–1.8 and 1.6 Ga were found in this study. A 3.6 Ga detrital grain is the oldest one so far identified in northwestern Fujian Province as well as throughout the Cathaysia Block. Nd isotope tDM values of eight volcano-sedimentary and clastic sedimentary rock samples centre on 2.73–1.68 Ga, being much older than the formation ages of their protoliths and thus showing that the recycling of older crust played an important role in their formation. These rocks underwent high grade metamorphism in the early Palaeozoic (458–425 Ma) during an important tectono-thermal event in the Cathaysia Block.  相似文献   

16.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

17.
The Altay orogenic belt (AOB), situated in the middle part of the Central Asian Orogenic Belt (CAOB), is one of the most important metallogenic belts in China. The Kangbutiebao Formation is a Late Paleozoic stratigraphic unit that hosts many important iron and Pb–Zn deposits. The Kangbutiebao Formation consists of intercalated volcanic and sedimentary rocks that have undergone regional greenschist to lower amphibolite facies metamorphism, and mainly outcrops in three NW-trending fault-bounded volcano–sedimentary basins, including the Maizi, Kelang, and Chonghuer basins. SHRIMP analyses of zircons from three metarhyolites of the Kangbutiebao Fm. in the Kelang Basin yield weighted mean 206Pb/238U ages of 412.6 ± 3.5 Ma, 408.7 ± 5.3 Ma and 406.7 ± 4.3 Ma, respectively, which can be interpreted as the eruption age of the Kangbutiebao silicic volcanic rocks in the Kelang Basin. These ages indicate that the Kangbutiebao Formation was formed during the Late Silurian to Early Devonian. They also demonstrate that the deposits hosted in the Kangbutiebao Formation were formed after 412–407 Ma. They play a key role in understanding the Paleozoic tectonic evolution and metallogenesis of the southern margin of the Chinese AOB.  相似文献   

18.
Geological mapping, petrography, geochemistry, and isotope studies enable the division of the Pelotas Batholith into six granitic suites: Pinheiro Machado (PMS), Erval (ES), Viamão (VS), Encruzilhada do Sul (ESS), Cordilheira (CS), and Dom Feliciano (DFS). The rocks of the PMS show a large compositional range (granite through granodiorite to tonalite), and the suite is considered pre- to syncollisional. Other suites show restricted compositional variations (granite to granodiorite) and are late to postcollisional. In general, the suites are metaluminous to slightly peraluminous (PMS, ES, and VS) or peraluminous (CS) or have alkaline tendencies (ESS and DFS). The magmatic evolution corresponds to high-K calc-alkaline to alkaline magmatism. The suites are enriched in K, Rb, and REE compared with rocks of typical calc-alkaline series. Initial 87Sr/86Sr ratios vary from 0.705 to 0.716, except in the CS, where they attain values of 0.732–0.740. Sm–Nd TDM model ages vary between 0.98 and 2.0 Ga, with initial εNd values ranging from −0.3 to −10. U–Pb zircon dates of samples from PMS, VS, and ESS suggest an age between 0.63 and 0.59 Ga for magmatism. Rb–Sr dates of samples of alkaline granites from DFS present ages between 0.57 and 0.55 Ga. The main tectonic controls of the magmatism of the Pelotas Batholith are high-dip sinistral shear zones.  相似文献   

19.
Nd model ages using depleted mantle (TDM) values for the sedimentary rocks in the Inner Zone of the SW Japan and western area of Tanakura Tectonic Line in the NE Japan allow classification into five categories: 2.6–2.45, 2.3–2.05, 1.9–1.55, 1.45–1.25, and 1.2–0.85 Ga. The provenance of each terrane/belt/district is interpreted on the basis of the TDMs, 147Sm / 144Nd vs. 143Nd / 144Nd relation, Nd isotopic evolution of the source rocks in East China and U–Pb zircon ages. The provenance of 2.6–1.8 Ga rocks, which are reported from Hida–Oki and Renge belts and Kamiaso conglomerates, is inferred to be the Sino–Korean Craton (SKC). The 2.3–1.55 Ga rocks, mostly from Ryoke, Mino and Ashio belts, are originally related with the SKC and/or Yangtze Craton (YC). The provenances of the sedimentary rocks with 1.45–0.85 Ga, from the Suo belt, Higo and some districts in the Mino and Ashio belts, are different from the SKC and YC. Especially, the Higo with 1.2–0.85 Ga is considered as a fragment of collision zone in East China. Akiyoshi belt probably belongs to the youngest age category of 1.2–0.85 Ga.Some metasedimentary rocks from the Ryoke belt have extremely high 147Sm / 144Nd and 143Nd / 144Nd ratios, whose main components are probably derived from mafic igneous rocks within the Ryoke belt itself and from the adjacent Tamba belt.  相似文献   

20.
Accretionary orogens throughout space and time represent extremely fertile settings for the formation and preservation of a wide variety of mineral deposit types. These range from those within active magmatic arcs, either in continental margin or intra-oceanic settings, to those that develop in a variety of arc-flanking environments, such as fore-arcs and back-arcs during deformation and exhumation of the continental margin. Deposit types also include those that form in more distal, far back-arc and foreland basin settings. The metallogenic signature and endowment of individual accretionary orogens are, at a fundamental level, controlled by the nature, composition and age of the sub-continental lithosphere, and a complex interplay between formational processes and preservational forces in an evolving Earth. Some deposit types, such as orogenic gold and volcanic massive sulfide (VMS) deposits, have temporal patterns that mimic the major accretionary and crustal growth events in Earth history, whereas others, such as porphyry Cu–Au–Mo and epithermal Au–Ag deposits, have largely preservational patterns. The presence at c. 3.4 Ga of (rare) orogenic gold deposits, whose formation necessitates some form of subduction–accretion, provides strong evidence that accretionary processes operated then at the margins of continental nuclei, while the widespread distribution of orogenic gold and VMS deposits at c. 2.7–2.6 Ga reflects the global distribution of accretionary orogens by this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号