首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Summary. Evidence of a conductivity anomaly in the Rhine-Graben was first given about 15 years ago and consequently led to the definition of various models of induction in the region for periods ranging from a few minutes to a few hours. These models reflect two antagonistic ways of explaining the observed anomalous variations of the magnetic field: direct induction in a two-dimensional (2-D) structure or static distortion of telluric currents by the resistive crystalline Vosges (France) and Schwarzwalde (Germany) massifs. We discuss the two approaches using a simple formalism. In particular, we show that the self-induction related to the anomalous currents flowing in the Rhine-Graben is negligible for periods larger than 1000 s, and that, even though the static distortion of telluric currents does account for the observed anomaly, 2-D models can explain some of its features. We also show how the channelled currents are induced in the large sedimentary basins surrounding the area under study.
An experimental verification of this result is given.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Summary. In recent years telluric sounding has been replaced by MT (magnetotellurics). However, several new purely telluric parameters, besides the traditional Jacobian, have been shown to be efficient geophysical indicators of lateral conductivity variations. A set of typical two-dimensional structures is analysed to demonstrate the resolving power of the new indicators. For such telluric studies, a wide frequency band is a great asset, especially because the indicators are best displayed as pseudo-sections in the frequency domain. However, a wide frequency range is easily achieved when only the telluric field needs to be measured. In MT the magnetic sensing coils often severely reduce the available bandwidth.  相似文献   

17.
A new formulation for the propagation of surface waves in three-dimensionally varying media is developed in terms of modal interactions. A variety of assumptions can be made about the nature of the modal field: a single set of reference modes, a set of local modes for the structure beneath a point, or a set of local modes for a laterally varying reference structure. Each modal contribution is represented locally as a spectrum of plane waves propagating in different directions in the horizontal plane. The influence of 3-D structure is included by allowing coupling between different modal branches and propagation directions. For anisotropic models, with allowance for attenuation, the treatment leads to a set of coupled 2-D partial differential equations for the weight functions for different modal orders.
The representation of the guided wavefield requires the inclusion of a full set of modes, so that, even for isotropic models, both Love and Rayleigh modes appear as different polarization states of the modal spectrum. The coupling equations describe the interaction between the different polarizations induced by the presence of the 3-D structure.
The level of lateral variation within the 3-D model is not required to be small. Horizontal refraction or reflection of the surface wavefield can be included by allowing for transfer between modes travelling in different directions. Approximate forms of the coupled equation system can be employed when the level of heterogeneity is small, for example the coupling between the fundamental mode and higher modes can often be neglected, or forward propagation can be emphasized by restricting the interaction to a limited band of plane waves covering the expected direction of propagation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号