首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commonly measured value of in the relaxed eddy accumulationmethod of about 0.56is shown to arise from the non-Gaussiannature of turbulence. Fourth-orderGram–Charlier functions forthe two-dimensional probability distributionsof variation in the horizontal component of wind velocityand concentrations of water vapour, carbondioxide and methane with respect to thevertical component of wind velocity are used to examinethe value of .An analytical solution for ispresented in terms of fourth-order moments.Under mean conditions, this solution givesa value for of0.557. Variation of is shown to be controlledprimarily by the ratio of the mean ofc'w3 (where c'is relevant to the entity of interest andw' is vertical component of windvelocity) to the correlationcoefficient between the entity concentrationand vertical component of wind velocity.  相似文献   

2.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

3.
Selected field measurements of evening stable boundary layers are presented in detail comparable with published Large Eddy Simulation results. Such models appear to match idealized theories more closely than do some boundary-layer observations. Any attempt to compare detailed observations with idealized models therefore highlights the variability of the real boundary layer.Here direct turbulence measurements across the stable boundary layer from a heterogeneous and an ideal site are contrasted. Recommendations are made for the information needed to distinguish heterogeneous and ideal cases.The companion paper (Part II) discusses further the issues of data, analysis in the presence of variability, and the effects of averaging over heterogeneous terrain.Part of UK Meteorological Office Atmospheric Process Research Division.  相似文献   

4.
Wind and stability characteristics in the atmospheric surface boundary layer at a height,Z, less than 20 m above the sea were examined in nine oceanic investigations. The analysis lends further support to the utility of the log-linear wind-profile law in the stability region of –0.4Z/L0.9, whereL is the Monin-Obukhov length. However, it is also shown that, inasmuch as better than 90% of the measurements fall within the range of ¦Z/L¦ 0.25, and inasmuch as this correction to the drag coefficient under neutral conditions amounts to less than 10%, the familiar logarithmic wind law may be used rather than the log-linear form. A wind-stress drag coefficient,C d (=1.2×10–3 between 1.0 m Z 18.3 m), is thus recommended for general deepwater oceanic applications. The situation over shallow water, which is different, is discussed briefly.  相似文献   

5.
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients (K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land.A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and g/, being the temperature difference between continental mixed-layer air and sea surface, is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014x 1/2 U (g/)–1/2.In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.  相似文献   

6.
This study details the observed effects ofatmospheric stability on characteristics of thesurface layer in a low wind speed (U = 1.5 m s-1)regime of tropical West Africa. Theaerodynamic roughness length, z0, anddisplacement height, d, obtained from profilewind-speed data at our bush land site (height 2 m)have values of 0.24 ± 0.10 m and 1.54 ± 0.04 mrespectively. In the unstable range (-2.5 < Ri < -0.1; Riis gradient Richardson number), thestandard deviation in wind speed fluctuations, u, increased from 0.57 ± 0.19 m s-1 toa maximum of 0.7 ± 0.2 m s-1 in near-neutralconditions, and in the stable range, the parameterdecreased rapidly to 0.41 ± 0.15 m s-1 at Ri 0.2.In the same stability range, the horizontal winddispersion, , decreased withincreasing stability from 19 ± 8 deg. to 13 ± 5 deg.The surface-layer integral quantity, u/u*, when plottedas a function of stability, is in agreement with theempirical results. The ratio ofsensible heat flux (estimated) to the net radiationranged between 0.1 and 0.2 at nighttime,increasing to about 0.5 during the daytime, and showeda strong dependency on season.  相似文献   

7.
In the summer of 1988/89 flights were carried out in the Coorong coastal area of South Australia to investigate sea-breeze fronts. The flights yielded data sets of the structure of the fronts in the cross-frontal direction with a spatial resolution of approximately 3 m. The study is focused on the budgets of sensible and latent heat in the vicinity of the front and on frontogenesis/frontolysis processes which are closely related to budget considerations.The frontogenesis relationships and the budgets were established on a 2 km length scale by low-pass filtering of the space series. As the wind components were measured with high accuracy, all processes which determine frontogenesis could be evaluated and are displayed in x,z-cross-sections: these are the confluence, shear and diabatic effects, all of which play a role in q/x-, q/z-, /x- as well as /z-frontogenesis. A detailed analysis is given for two different states of frontal development. The presented results shed much light on the governing physical processes in the frontal region with strong emphasis on the effects of confluence-generated updrafts, on shear instabilities causing bulges and clefts in the frontal surface as well as producing the elevated frontal head, and on processes related to differential heating and moistening.  相似文献   

8.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

9.
This is one of a series of papers on the Askervein Hill Project. It presents results on the variations in mean wind speed at fixed heights (z) above the ground from linear arrays of anemometer posts and towers. Most of the data are for z = 10 m but some are for z = 3 m. Selected and directionally grouped data from the 55 Mean Flow runs are presented together with mean flow data from Askervein '83 Turbulence runs. Comparisons are made between the data and guideline estimates of fractional speed-up ratio at hilltop locations and between the data and MS3DJH/3 model predictions along the tower lines. There is good agreement in most cases.  相似文献   

10.
Recent studies suggest that the destruction of methane by Cl in the marine boundary layer could be accounted for as another major sink besides the methane destruction by OH. High level ab initio molecular orbital calculations have been carried out to study the CH4+Cl reaction, the carbon Kinetic Isotope Effect (KIE) is calculated using Conventional Transition-State Theory (CTST) plus Wigner and Eckart semiclassical tunneling corrections. The calculated KIE is around 1.026 at 300 K and has a small temperature variation. This is by far the largest KIE among different processes involving atmospheric methane destruction (e.g., OH, soil). A calculated mass balance of atmospheric methane including the KIE for the CH4+Cl reaction is found to favor those methane budgets with enhanced biological methane sources, which have relatively lighter carbon isotope composition.  相似文献   

11.
Wind and temperature profiles in the stable boundary layer were analyzed in the context of MoninObukhov similarity. The measurements were made on a 60-m tower in Kansas during October 1999 (CASES-99). Fluxprofile relationships, obtained from these measurements in their integral forms, were established for wind speed and temperature. Use of the integral forms eliminates the uncertainty and accuracy issues resulting from gradient computations. The corresponding stability functions, which were nearly the same for momentum and virtual sensible heat, were found to exhibit different features under weakly stable conditions compared to those under strongly stable conditions. The gradient stability functions were found to be linear, namely m = 1+ 5.8 and h = 1 + 5.4 up to a limit of the MoninObukhov stability parameter = 0.8; this is consistent with earlier findings. However, for stronger stabilities beyond a transition range, both functions were observed gradually to approach a constant, with a value of approximately 7. To link these two distinct regimes, a general but pliable functional form with only two parameters is proposed for the stability functions, covering the entire stability range from neutral to very stable conditions.  相似文献   

12.
A liquid jet of 90 m diameter and variable length has been utilized to determine absorption rates and, hence, mass accommodation coefficients , of atmospheric trace gases. The compounds investigated are HCl (0.01), HNO3 (0.01), N2O5 (0.005), peroxyacetyl nitrate (>0.001), and HONO (0.005). It is concluded that the absorption of these trace gases by liquid atmospheric water is not significantly retarded by interfacial mass transport. The strengths and limitations of the liquid jet technique for measuring mass accommodation coefficients are explored.  相似文献   

13.
Stable Isotope Ratios: Hurricane Olivia   总被引:1,自引:0,他引:1  
The oxygen and hydrogen isotopic compositions of rains from HurricaneOlivia (1994) in the eastern Pacific were measured. The rains werecollected on 24 and 25 September during airplane flights conducted at anelevation of 3 km. Hurricane Olivia peaked in intensity to a category-4storm between the two dates. Isotope ratios of rains from HurricaneOlivia were markedly lower ( 18O = –13.9to –28.8) than that of rain collected from a thunderstormat an elevation of 2.3 km outside the influence of Olivia (18O = –3.8). A distinct decrease in isotoperatios from the first day to the next ( 18O =–18.4 to –21.9) in Hurricane Olivia wasattributed to decreased updraft velocities and outflow aloft. Thisshifted the isotopic water mass balance so that fewer hydrometeors werelifted and more ice descended to flight level. A decrease in the averagedeuterium excess from the first day to the next (d = 15.5 to 7.1)was attributed to an increase in the relative humidity of the watervapor `source' area. We hypothesize that the `source' region for therain was in the boundary layer near the storm center and that becausethe hurricane was at peak intensity prior to the second day the relative humidity was higher.  相似文献   

14.
Dispersion from a line source into a stable boundary layer of thickness l is analysed through solution of the diffusion equation assuming an exchange coefficient K(z) (1 – z/l) 2 and wind profiles u(z) z n, with n = 0,1. Estimates of ground-level concentrations are made by developing analytic formulae where this is possible. A general method of solution using Laplace transformation and Green's function techniques is developed as an alternative to the eigenfunction expansion method discussed previously (Robson, 1983).  相似文献   

15.
Summary The integral aerosol optical depths (k ) at the hour of 08:20 Local Standard Time (LST), are compared with those calculated previously at 11:20 and 14:20 LST, for clear days during summer in Athens over the period 1962–1988. The mean values at 08:20 LST were consistently lower than the values at 11:20 and 14:20 LST. The influence of the vertical wind profile on the values ofk was also investigated. A comparison was made of the wind profiles at 02:00 and 14:00 LST, for days in which the 11:20 and 14:20 LST values ofk were 0.200 andk 0.350, respectively. The corresponding bulk wind shear s was also found for the period 1980–1988. The most significant results occurred with the first category of days. The resultant wind velocities from the surface to the 900 hPa level, in each hour were higher by 2–4 m·s–1 with respect to the corresponding values for the second category. At 02:00 LST the bulk wind shear showed a considerable difference (1.8) between the two categories of days in the surface to 700 hPa layer at 02:00 LST. Finally, the associated weather conditions that appear to initiate a period of low values ofk (k 0.200) at 11:20 and 14:20 LST were examined for the period 1980–1988. Fifteen such cases were identified and it was found that they all occurred after the passage of weak cold fronts.With 6 Figures  相似文献   

16.
The stable planetary boundary layer at the baseof the residual layer supports internalwaves that are unambiguously boundary layer incharacter. Some of these wavesare instabilities and some are neutrally stable modes, but they all have critical levelsin the residual layer. These waves exist for a broad range of conditions and should bea major component of any ducted disturbance that propagates within ninety degreesof the wind direction. The wave properties can be computed without the numericaldifficulties usually associated with critical-level systems.  相似文献   

17.
The carbon isotopic ratio of atmospheric carbon dioxide at Tsukuba,Japan   总被引:1,自引:0,他引:1  
To find out the secular and seasonal trends of the 13C value and CO2 concentration in the surface air and the determination of the 13C in the atmospheric CO2 collected at Tsukuba Science City was carried out during the period from July 1981 to October 1983. The monthly average of the 13C value of CO2 in the surface air collected at 1400 LMT ranged from -7.52 to \s-8.45 with an average of -7.96±0.25 and the CO2 concentration in the air varied from 334.5 l 1-1 to 359 l 1-1 with an average of 347.2±6.3 l 1-1. The 13C value is high in summer and low in winter and is negatively correlated with the CO2 concentration. In general, the relationship between the 13C and the CO2 concentration is explainable by a simple mixing model of two different constant carbon isotopic species but the relationship does not always follow the model. The correlation between the 13C value and the CO2 concentration is low during the plant growth season and high at other times. The observed negative deviation of the 13C value from the simple mixing model in the plant growth season is partly due to the isotopic fractionation process which takes place in the land biota.  相似文献   

18.
The processes of interaction between the atmospheric surface and mixed layers in daytime convective conditions over land are studied using a data set obtained during flights by an instrumented aircraft. Profiles of partitioned run-averaged statistics and examples of time series plots are discussed in the light of results from a recently published study by the authors, in which the average structure and flow within coherent eddies was reconstruced using a compositing technique. This evidence is used to support a conceptual model of the mechanisms of interaction between surface-layer plumes and mixed-layer thermal columns. The divergent flow created near the surface by the downdraft arms of the large-scale mixed-layer circulation patterns, forces the development of lines of convergence in the surface layer (the so-called thermal walls), which channel air into the bases of the mixed-layer thermals. Plumes progressively group and merge together with height in the surface and free convection layers, and move along these convergence lines toward large collector plumes at the intersection points, or hubs. Above the hubs are the thermals, and air parcels originating from plumes and their environment are strongly mixed as they rise, leading to an increased difficulty of the conditional sampling method to distinguish between them. The observed influence of mixed-layer convective processes far down into the surface layer, and the form of the averaged profiles, supports recent refinements of the theory of surface-layer structure suggested in Kader and Yaglom (1990).Notation CBL convective boundary layer - SL surface layer - FCL free convection layer - ML mixed layer  相似文献   

19.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

20.
Summary Feature-based predictability stratifies forecast model errors on the basis of individual weather systems. We examine only one level and chose very simple categories: high, cut-off low, trough and block. European Centre for Medium-range Weather Forecasts data are used. We emphasize systems found near Australia and New Zealand during winter 1987. Calculations for the preceding summer and fall and for other midlatitude regions of the southern hemisphere yield similar results.The approach herein is fully automated and simple to implement. Features are identified in the verification field. Then an error calculation is made on moving grids that are each centered upon and contain one system.The total error is the root mean square difference (RMS) between forecast and verification. The structural error is the RMS difference when the forecast and verification small grids are independently centered upon the corresponding feature in each field. The difference between the structural and total errors, called the locational error, is typically a quarter of the total. Even when normalized by presistence, highs are forecast better than troughs; cut-off lows and troughs have similar errors. The distance between the forecast and observed positions is typically 3° longitude west and 0.5° latitude north of where features should be at 72 hours. The model has a systematic bias of too small amplitude of vorticity. No relation is found between skill and jet stream splitting.With 4 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号