首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
侯晓萍  陈胜宏 《岩土力学》2020,41(4):1437-1446
采用复合单元法建立了模拟裂隙多孔介质变饱和流动的数值模型。该模型具有以下特点:裂隙不需要离散成特定单元,而是根据几何位置插入到孔隙基质单元中形成复合单元;在复合单元中,分别建立裂隙流和孔隙基质流的计算方程,二者通过裂隙?基质界面产生联系并整合成复合单元方程;复合单元方程具有和常规有限单元方程相同的格式,因此,可以使用常规有限单元方程的求解技术。采用欠松弛迭代、集中质量矩阵以及自适应时步调节等技术,开发了裂隙多孔介质变饱和流动计算程序。通过模拟一维干土入渗和复杂裂隙含水层内的流动问题,验证了该模型的合理性和适用性。模拟结果为进一步认识非饱和裂隙含水层地下水流动特性提供了理论依据。  相似文献   

2.
Numerical approximation based on different forms of the governing partial differential equation can lead to significantly different results for two-phase flow in porous media. Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow. A comparison of various forms of numerical approximations for two-phase flow equations is performed in this work. Three forms of equations including the pressure-based, mixed pressure–saturation and modified pressure–saturation are examined. Each of these three highly nonlinear formulations is approximated using finite difference method and is linearized using both Picard and Newton–Raphson linearization approaches. Model simulations for several test cases demonstrate that pressure based form provides better results compared to the pressure–saturation approach in terms of CPU_time and the number of iterations. The modification of pressure–saturation approach improves accuracy of the results. Also it is shown that the Newton–Raphson linearization approach performed better in comparison to the Picard iteration linearization approach with the exception for in the pressure–saturation form.  相似文献   

3.
This paper is concerned with numerical methods for the modeling of flow and transport of contaminant in porous media. The numerical methods feature the mixed finite element method over triangles as a solver to the Darcy flow equation and a conservative finite volume scheme for the concentration equation. The convective term is approximated with a Godunov scheme over the dual finite volume mesh, whereas the diffusion–dispersion term is discretized by piecewise linear conforming triangular finite elements. It is shown that the scheme satisfies a discrete maximum principle. Numerical examples demonstrate the effectiveness of the methodology for a coupled system that includes an elliptic equation and a diffusion–convection–reaction equation arising when modeling flow and transport in heterogeneous porous media. The proposed scheme is robust, conservative, efficient, and stable, as confirmed by numerical simulations.   相似文献   

4.
Numerical identification of diffusion parameters in a nonlinear convection–diffusion equation is studied. This partial differential equation arises as the saturation equation in the fractional flow formulation of the two-phase porous media flow equations. The forward problem is discretized with the finite difference method, and the identification problem is formulated as a constrained minimization problem. We utilize the augmented Lagrangian method and transform the minimization problem into a coupled system of nonlinear algebraic equations, which is solved efficiently with the nonlinear conjugate gradient method. Numerical experiments are presented and discussed. This work was partially supported by the Research Council of Norway (NFR), under grant 128224/431.  相似文献   

5.
Coupled theory of mixtures for clayey soils   总被引:4,自引:0,他引:4  
In this work, elasto-plastic coupled equations are formulated in order to describe the time-dependent deformation of saturated cohesive soils (two-phase state). Formulation of these equations is based on the principle of virtual work and the theory of mixtures for inelastic porous media. The theory of mixtures for a linear elastic porous skeleton was first developed by Biot (Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, 1955, 26, 188–185). An extension of Biot's theory into a nonlinear inelastic media was performed by Prevost (Mechanics of continuous porous media, International Journal of Engineering Science, 1980, 18, 787–800). The saturated soil is considered as a mixture of two deformable media, the solid grains and the water. Each medium is regarded as a continuum and follows its own motion. The flow of pore-water through the voids is assumed to follow Darcy's law. The coupled equations are developed for large deformations with finite strains in an updated Lagrangian reference frame. The coupled behavior of the two-phase materials (soil-water state) is implemented in a finite element program. A modified Cam-clay model is adopted and implemented in the finite element program in order to describe the plastic behavior of clayey soils. Penetration of a piezocone penetrometer in soil is numerically simulated and implemented into a finite element program. The piezocone penetrometer is assumed to be infinitely stiff. The continuous penetration of the cone is simulated by applying an incremental vertical movement of the cone tip boundary. Results of the finite element numerical simulation are compared with experimental measurements conducted at Louisiana State University using the calibration chamber. The numerical simulation is carried out for two cases. In the first case, the interface friction between the soil and the piezocone penetrometer is neglected. In the second case, interface friction is assumed between the soil and the piezocone. The results of the numerical simulations are compared with experimental laboratory measurements.  相似文献   

6.
This paper analyzes the adjoint equations and boundary conditions for porous media flow models, specifically the Buckley-Leverett equation, and the compressible two-phase flow equations in mass conservation form. An adjoint analysis of a general scalar hyperbolic conservation law whose primal solutions include a shock jump is initially presented, and the results are later specialized to the Buckley-Leverett equation. The non-convexity of the Buckley-Leverett flux function results in adjoint characteristics that are parallel to the shock front upstream of the shock and emerge from the shock front downstream of the shock. Thus, in contrast to the behavior of Burgers’ equation where the adjoint is continuous at a shock, the Buckley-Leverett adjoint, in general, contains a discontinuous jump across the shock. Discrete adjoint solutions from space-time discontinuous Galerkin finite element approximations of the Buckley-Leverett equation are shown to be consistent with the derived closed-form analytical solutions. Furthermore, a general result relating the adjoint equations for different (though equivalent) primal equations is used to relate the two-phase flow adjoints to the Buckley-Leverett adjoint. Adjoint solutions from space-time discontinuous Galerkin finite element approximations of the two-phase flow equations are observed to obey this relationship.  相似文献   

7.
A mixed finite element–boundary element solution for the analysis of two-dimensional flow in porous media composed of rock blocks and discrete fractures is described. The rock blocks are modelled implicitly by using boundary elements whereas finite elements are adopted to model the discrete fractures. The computational procedure has been implemented in a hybrid code which has been validated first by comparing the numerical results with the closed-form solution for flow in a porous aquifer intercepted by a vertical fracture only. Then, a more complex problem has been solved where a pervious, homogeneous and isotropic matrix containing a net of fractures is considered. The results obtained are shown to describe satisfactorily the main features of the flow problem under study. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
A new model for two-phase flow of water and air in soil is presented. This leads to a system of two mass balance equations and two equations representing conservation of momentum of fluid and gas, respectively. This paper is concerned with the verification of this model for the special case of a rigid soil skeleton by computational experiments. Its numerical treatment is based on the Raviart–Thomas mixed finite element method combined with an implicit Euler time discretization. The feasibility of the method is illustrated for some test examples of one- and two-dimensional two-phase flow problems.  相似文献   

9.
A finite element formulation is proposed to approximate a nonlinear system of partial differential equations, composed by an elliptic subsystem for the pressure–velocity and a transport equation (convection–diffusion) for the concentration, which models the incompressible miscible displacement of one fluid by another in a rigid porous media. The pressure is approximated by the classical Galerkin method and the velocity is calculated by a post-processing technique. Then, the concentration is obtained by a Galerkin/least-squares space–time (GLS/ST) finite element method. A numerical analysis is developed for the concentration approximation. Then, stability, convergence and numerical results are presented confirming the a priori error estimates.  相似文献   

10.
Fully implicit time-space discretizations applied to the two-phase Darcy flow problem leads to the systems of nonlinear equations, which are traditionally solved by some variant of Newton’s method. The efficiency of the resulting algorithms heavily depends on the choice of the primary unknowns since Newton’s method is not invariant with respect to a nonlinear change of variable. In this regard, the role of capillary pressure/saturation relation is paramount because the choice of primary unknowns is restricted by its shape. We propose an elegant mathematical framework for two-phase flow in heterogeneous porous media resulting in a family of formulations, which apply to general monotone capillary pressure/saturation relations and handle the saturation jumps at rocktype interfaces. The presented approach is applied to the hybrid dimensional model of two-phase water-gas Darcy flow in fractured porous media for which the fractures are modelled as interfaces of co-dimension one. The problem is discretized using an extension of vertex approximate gradient scheme. As for the phase pressure formulation, the discrete model requires only two unknowns by degree of freedom.  相似文献   

11.
We present an accurate numerical method for a large class of scalar, strongly degenerate convection–diffusion equations. Important subclasses are hyperbolic conservation laws, porous medium type equations, two-phase reservoir flow equations, and strongly degenerate equations coming from the recent theory of sedimentation–consolidation processes. The method is based on splitting the convective and the diffusive terms. The nonlinear, convective part is solved using front tracking and dimensional splitting, while the nonlinear diffusion part is solved by an implicit–explicit finite difference scheme. In addition, one version of the implemented operator splitting method has a mechanism built in for detecting and correcting unphysical entropy loss, which may occur when the time step is large. This mechanism helps us gain a large time step ability for practical computations. A detailed convergence analysis of the operator splitting method was given in Part I. Here we present numerical experiments with the method for examples modelling secondary oil recovery and sedimentation–consolidation processes. We demonstrate that the splitting method resolves sharp gradients accurately, may use large time steps, has first order convergence, exhibits small grid orientation effects, has small mass balance errors, and is rather efficient.  相似文献   

12.
A three-dimensional (3D) mass transport numerical model is presented. The code is based on a particle tracking technique: the random-walk method, which is based on the analogy between the advection–dispersion equation and the Fokker–Planck equation. The velocity field is calculated by the mixed hybrid finite element formulation of the flow equation. A new efficient method is developed to handle the dissimilarity between Fokker–Planck equation and advection–dispersion equation to avoid accumulation of particles in low dispersive regions. A comparison made on a layered aquifer example between this method and other algorithms commonly used, shows the efficiency of the new method. The code is validated by a simulation of a 3D tracer transport experiment performed on a laboratory model. It represents a heterogeneous aquifer of about 6-m length, 1-m width, and 1-m depth. The porous medium is made of three different sorts of sand. Sodium chloride is used as a tracer. Comparisons between simulated and measured values, with and without the presented method, also proves the accuracy of the new algorithm.  相似文献   

13.
In this paper, a fully coupled numerical model is presented for the finite element analysis of the deforming porous medium interacting with the flow of two immiscible compressible wetting and non-wetting pore fluids. The governing equations involving coupled fluid flow and deformation processes in unsaturated soils are derived within the framework of the generalized Biot theory. The displacements of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the present formulation. The other variables are incorporated into the model using the experimentally determined functions that define the relationship between the hydraulic properties of the porous medium, i.e. saturation, relative permeability and capillary pressure. It is worth mentioning that the imposition of various boundary conditions is feasible notwithstanding the choice of the primary variables. The modified Pastor–Zienkiewicz generalized constitutive model is introduced into the mathematical formulation to simulate the mechanical behavior of the unsaturated soil. The accuracy of the proposed mathematical model for analyzing coupled fluid flows in porous media is verified by the resolution of several numerical examples for which previous solutions are known. Finally, the performance of the computational algorithm in modeling of large-scale porous media problems including the large elasto-plastic deformations is demonstrated through the fully coupled analysis of the failure of two earth and rockfill dams. Furthermore, the three-phase model is compared to its simplified one which simulates the unsaturated porous medium as a two-phase one with static air phase. The paper illustrates the shortcomings of the commonly used simplified approach in the context of seismic analysis of two earth and rockfill dams. It is shown that accounting the pore air as an independent phase significantly influences the unsaturated soil behavior.  相似文献   

14.
A mixed finite volume method is applied in order to simulate a simplified Far Field model. We show how this method can be adapted to both the elliptic and the convection–diffusion equations describing the water flow and the variations of the concentration of the radioactive element respectively. For the water flow problem, we justify an a posteriori error estimator. Finally, we present some numerical results.  相似文献   

15.
The problem of calculating equivalent grid block permeability tensors for heterogeneous porous media is addressed. The homogenization method used involves solving Darcy's equation subject to linear boundary conditions with flux conservation in subregions of the reservoir and can be readily applied to unstructured grids. The resulting equivalent permeability tensor is stable as defined relative to G-convergence. It is proposed to use both conforming and mixed finite elements to solve the local problems and compute approximations from above and below of the equivalent permeability, respectively. Comparisons with results obtained using periodic, pressure and no-flux boundary conditions and the renormalization method are presented. A series of numerical examples demonstrates the effectiveness of the methodology for two-phase flow in heterogeneous reservoirs.  相似文献   

16.
We consider the modeling and simulation of compositional two-phase flow in a porous medium, where one phase is allowed to vanish or appear. The modeling of Marchand et al. (in review) leads to a nonlinear system of two conservation equations. Each conservation equation contains several nonlinear diffusion terms, which in general cannot be written as a function of the gradients of the two principal unknowns. Also the diffusion coefficients are not necessarily explicit local functions of them. For the generalised mixed finite elements approximation, Lagrange multipliers associated to each principal unknown are introduced, the sum of the diffusive fluxes of each component is explicitly eliminated and the static condensation leads to a “global” nonlinear system of equations only in the Lagrange multipliers also including complementarity conditions to cope with vanishing or appearing phases. After time discretisation, this system can be solved at each time step using a semi-smooth Newton method. The static condensation involves “local” nonlinear systems of equations associated to each element, solved also by a semismooth Newton method. The algorithm is successfully applied to 1D and 2D examples of water–hydrogen flow involving gas phase appearance and disappearance.  相似文献   

17.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A space-time discontinuous Galerkin finite element method is proposed and applied to a convection-dominant single-phase flow problem in porous media. The numerical scheme is based on a coupled space-time finite element discretization allowing for discontinuous approximations in space and in time. The continuities on the element interfaces are weakly enforced by the flux treatments, so that no extra penalty factor has to be determined. The resulting space-time formulation possesses the advantage of capturing the steep concentration front with sharp gradients efficiently. The stability and reliability of the proposed approach is demonstrated by numerical experiments. The author is grateful to the DFG (German Science Foundation—Deutsche Forschungsgemeinschaft) for the financial support under the grant number Di 430/4-2.  相似文献   

19.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

20.
We consider the slightly compressible two-phase flow problem in a porous medium with capillary pressure. The problem is solved using the implicit pressure, explicit saturation (IMPES) method, and the convergence is accelerated with iterative coupling of the equations. We use discontinuous Galerkin to discretize both the pressure and saturation equations. We apply two improvements, which are projecting the flux to the mass conservative H(div)-space and penalizing the jump in capillary pressure in the saturation equation. We also discuss the need and use of slope limiters and the choice of primary variables in discretization. The methods are verified with two- and three-dimensional numerical examples. The results show that the modifications stabilize the method and improve the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号