首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
D. H. Miller 《GeoJournal》1984,8(3):211-219
In many climatic regions the interface between the earth and the atmosphere consists of a mosaic of ecosystems, each possessing specific properties of absorbing and storing energy and matter. Large contrasts in these properties create differences in interface temperature and moisture, which, in combination with contrasts in roughness, produce differences in sensible and latent heat fluxes injected into the atmosphere, so that the boundary layer experiences rapid alterations to its structure and transport of energy and matter. In consequence, good data on fluxes from individual ecosystems and their contrasts are essential both to understanding the functioning of the boundary layer and energy/mass accounting at source and sink ecosystems.  相似文献   

2.
In many climatic regions the interface between the earth and the atmosphere consists of a mosaic of ecosystems, each possessing specific properties of absorbing and storing energy and matter. Large contrasts in these properties create differences in interface temperature and moisture, which, in combination with contrasts in roughness, produce differences in sensible and latent heat fluxes injected into the atmosphere, so that the boundary layer experiences rapid alterations to its structure and transport of energy and matter. In consequence, good data on fluxes from individual ecosystems and their contrasts are essential both to understanding the functioning of the boundary layer and energy/mass accounting at source and sink ecosystems.  相似文献   

3.
The nucleation and propagation of polygonal cracks in hydrous sulphate dunes at White Sands National Monument, New Mexico, are affected by water availability, transport through the sand and exchange with the atmosphere. These gypsum sands are cohesive enough to crack due to capillary forces and gypsum cements formed during evaporation. Surface cracks form five‐sided polygons with a variety of triple‐junction angles. Cracks extend down to variable depths and polygons increase in size with depth, showing a maturation similar to experimentally produced polygonal columns in drying corn starch. Results from two years of monitoring crack geometries, temperature and humidity demonstrate that cracks form when water is lost to the atmosphere through the transport of water vapour. Subsurface relative humidity below 5 to 10 cm is almost always maintained at 100% by the evaporation and condensation of water in thin films on grains. The amplitude of daily temperature and thus absolute humidity changes decreases with depth, consistent with lower evaporation and condensation rates with increasing depth. Changes in absolute humidity and the contrast between humidity in pore spaces versus the overlying atmosphere result in significant water loss from the dunes except during times of precipitation and frost/dew condensation. This water loss allows cracks to nucleate and propagate into the dunes. This study hypothesizes that crack tips propagate into sand to the depth at which thin films of water on grains are drying, and that this depth varies from the surface of the dune during precipitation events to depths greater than 45 cm when dunes are drier.  相似文献   

4.
Weathering processes affecting pyritic wastes may generate huge amounts of acid waters with high concentrations of potentially toxic contaminants (acid mine drainage). Acid mine drainage is mainly produced in the vadose zone. In the present study, a coupled non-isothermal multiphase flow and reactive transport model of the vadose zone of sulfide mine tailings was developed. The geochemical model included kinetically controlled reactions for Fe(II)-oxidation and for the dissolution of sulfide and aluminosilicate phases and the Pitzer ion-interaction model to describe the behavior of the pore-water solutions. Model results were compared with experimental observations in unsaturated column experiments under strongly evaporative conditions similar to arid or semiarid climates. Evolution trends for temperature, water saturation, evaporation rates, pore-water hydrochemistry and mineral phases observed during the drying experiment were adequately reproduced. The coupled model reproduced the increase of solute concentrations in the column top and the precipitation of a crust of secondary mineral phases. This crust became a barrier for water vapour diffusion to the atmosphere and modified the thermohydraulic behavior of the tailings. Enhanced downward migration of water vapour and its condensation in this colder end of the column were correctly taken into account by the model, which reproduced the dilution observed in the lower part of the column during the experiments.  相似文献   

5.
土中水分的蒸发过程试验研究   总被引:1,自引:0,他引:1  
土中水分的蒸发是含水量动态减小的过程,伴随着土结构、应力和应变状态的演化,对土体的工程性质有重要影响,是一些工程问题的直接诱因.以初始饱和的黏土试样为研究对象,在控制环境温度(25 ~45℃)和试样初始厚度(5 ~11mm)条件下,开展了一系列室内干燥试验.通过监测试样在干燥过程中的失水量变化,获得了试样的蒸发曲线.结...  相似文献   

6.
利用山西省周边共8个探空站的实测资料,计算了山西省上空1959年~1992年的水汽含量和1990年的水汽收支与水汽输送通量,包括总输送、切变输送、时间涡动输送、平均输送等分量。在此基础上建立了山西省水分循环和水量平衡模型。结果表明,山西上空水汽含量年内干湿变化大于全国平均情况,多年变化存在一定的丰枯阶段性;年水汽净输入量约690亿m3,主要从西边界和南边界输入,从东边界输出,涡动输送量是主要输入机制,平均输送是主要输出机制,受强西风环流控制;山西的自然地理条件使其对大气水资源的利用率为30%,低于全国平均利用率;山西水分内循环较全国平均情况强盛,由于水分内循环的作用,可使当地蒸发形成的降水量占全年总降水量的15%;地下水开采已对大气水分循环要素产生影响,进而可能对山西省自然环境的变化产生负效应。这些事实增进了对山西省水资源的水文和水文气候学背景的认识。  相似文献   

7.
干湿循环下石灰改良膨胀土离心模型试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究南宁石灰改良膨胀土高铁路堤在干湿循环作用下的工程特性,运用相似原理,以室内离心模型试验为主要手段,对路堤模型进行三次干湿循环试验,探究土压力、吸力、含水率、温度等随时间、深度及干湿循环次数变化的规律。研究表明:在离心模型试验中,自行推导建立的蒸发相似关系对蒸发时间和强度的控制适用可行,效果良好;路堤边坡变形与含水率变化密切相关,蒸发过程中产生少量裂缝,最大宽度不足2 mm,降雨过程裂缝消失;三次干湿循环后路堤整体变形不明显;土压力、吸力、含水率、温度随时间和深度等具有明显的变化规律,随深度增加大气影响减弱,试验测得其影响深度为8.0 m。研究结果可为现场石灰改良膨胀土高铁路堤施工提供一定参考,具有良好的工程应用价值。  相似文献   

8.
Domain configuration and several physical parameterization settings such as planetary boundary layer, cumulus convection, and ocean–atmosphere surface flux parameterizations can play significant roles in numerical prediction of tropical cyclones. The present study focuses to improve the prediction of the TC Gonu by investigating the sensitivity of simulations to mentioned configurations with the Advanced Hurricane WRF model. The experiments for domain design sensitivity with 27 km resolution has been shown moving the domains towards the east improve the results, due to better account for the large-scale process. The fixed and movable nests on a 9-km grid were considered separately within the coarse domain and their results showed that despite salient improvement in simulated intensity, an accuracy reduction in simulated track was observed. Increasing horizontal resolution to 3 km incredibly reduced the simulated intensity accuracy when compared to 27 km resolution. Thereafter, different initial conditions were experimented and the results have shown that the cyclone of 1000 hPa sea level pressure is the best simulation initial condition in predicting the track and intensity for cyclone Gonu. The sensitivity of simulations to ocean–atmosphere surface-flux parameterizations on a 9-km grid showed the combination of ‘Donelan scheme’ for momentum exchanges along with ‘Large and Pond scheme’ for heat and moisture exchanges provide the best prediction for cyclone Gonu intensity. The combination of YSU and MYJ PBL scheme with KF convection for prediction of track and the combination of YSU PBL scheme with KF convection for prediction of intensity are found to have better performance than the other combinations. These 22 sensitivity experiments also implicitly lead us to the conclusion that each particular forecast aspect of TC (e.g., track, intensity, etc.) will require its own special design.  相似文献   

9.
评估两类模式对陆面状态的模拟和估算   总被引:1,自引:0,他引:1  
针对夏季土壤变干过程,利用观测系统模拟试验,比较离线的陆面模式(LSM)和耦合大气边界层的陆面模式(SCM)对土壤温度、湿度和地表热通量等陆面状态的模拟,然后借助数据同化方法,评估2类模式对陆面状态的估算能力.结果显示:2类模式除对地表长波辐射和感热通量的模拟差别较大外,对其余量则较小;只同化表层土壤湿度观测时,LSM对土壤湿度和感热通量的估算好于SCM,对土壤温度的估算则相反,而对潜热通量估算的差距很小;同时同化表层土壤温度、湿度观测会使地表热通量的估算差距增大;最后对2类模式不同表现的可能原因进行分析讨论.上述数值模拟和同化结果:当用某一类模式的模拟结果或同化产品为另一类不同模式提供初边界条件时必须注意它们之间的差异,避免出现输入量引起的模式状态量间的动力不协调现象.  相似文献   

10.
Surface evaporation is one of the main processes in the soil–atmosphere interaction. Since it is highly related to meteorological factors and soil properties, determination of evaporation rate from soil surface remains a challenge. To investigate the evaporation from unsaturated soil, a climate control apparatus has been newly developed, which has a feature of completely controlling air temperature, relative humidity and wind speed. Twelve climatic conditions are applied to three kinds of soil specimens to carry out the evaporation tests. The results show that only water content cannot allow an accurate estimation, additional variables accounting for soil texture and wind speed must be included as well. Moreover, a simple approach to parameterize evaporation is presented by the soil moisture θ of top 1-cm layer with considering the effect of soil texture and wind speed. It is found that the new approach is able to accurately estimate the evaporation from unsaturated soil.  相似文献   

11.
陈盼  韦昌富  李幻  陈辉  魏厚振 《岩土力学》2010,31(Z2):383-389
多孔介质中的流动问题,与孔隙介质的特性,含水量状态以及含水量的变化历史密切相关。基于毛细循环滞回理论模型,考虑含水量变化历史对土水特征关系的影响,在开发的U-DYSAC2有限元程序中进行了相应的数值实施。在试验给定的初边值条件下进行了非饱和渗流模拟分析,并将模拟结果与实测数据比较,表明在压力边界条件反复变化下,考虑滞回效应能获得更接近实测的结果,证实该模型在模拟各种循环变化条件下非饱和土渗流初边值问题的适用性与必要性。对入渗重分布反复变化条件下非饱和土柱流动的数值模拟表明,考虑滞回与不考虑滞回条件下,含水量、孔隙水压力和湿峰的迁移的预测在入渗后的重分布过程差异较大。考虑滞回效应时,土柱上部的脱湿速率、下部的吸湿速率比不考虑滞回时要低。从而证实了非饱和多孔介质中的土水状态依赖于含水量变化,而且强烈依赖于土体的水力路径变化。因此,循环边界条件变化下,毛细滞回效应在非饱和渗流模拟中的影响显著,必须加以考虑。  相似文献   

12.
In this study, we tried to model the processes of moisture and heat transfers in the soil–vegetation–atmosphere system in an integrated comprehensive way. The purpose of the study is to simulate profiles of soil water content and temperature at root active zone (i.e., 0–50 cm), taking the root water uptake, soil evaporation, and canopy transpiration into account. The water and heat transfer equations are solved by an iterative Newton–Raphson technique and a finite difference method is used to solve the governing equations. Soil water content and soil temperature dynamics could be simulated rather accurately in a cropped field on Loess Plateau area. The water and heat transfer flux predicted by the classical theory of Philip and de Vries (Tans Am Geophys Union 38:222–232, 1957) slightly overestimated near the surface and underestimated at the deeper depths, as a result of the overestimated soil evaporation at the top soil layer (0–10 cm) and underestimated crop canopy transpiration at the deeper depths (10–50 cm). Water content tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). Soil temperatures during the simulated period was slightly overestimated in the nighttimes and underestimated in the daytimes, as a result of the underestimated soil water content at the top soil layer (0–10 cm) and overestimated at the deeper depths (10–50 cm). Soil temperatures tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). While the sum of the water and heat regimes yielded a much better match with the soil water content and soil temperature obtained from the field observations. The results obtained show that the model coupled water and heat transfer is able to capture the dynamics of soil water content.  相似文献   

13.
张华  胡文龙  陈善雄 《岩土力学》2014,35(Z2):129-134
探索了一种由土壤基本物性指标、气象数据预测非饱和土表层蒸发过程的方法。通过土壤基本物理性质(颗粒分布、土粒相对密度、干密度)预测出土-水特征曲线(SWCC),进而得到土壤气相对湿度与含水率的关系,采用Penman-Wilson模型预测出了非饱和土表面的蒸发曲线。通过该方法,只需实地采取土样,获取其基本物理性质,由任意时刻土壤的含水率及气象数据就能预测出该时刻土表的蒸发速率。采用自制的自动蒸发测量系统进行浅层土蒸发试验,得到了蒸发曲线,与预测结果进行比较发现预测蒸发过程与实测结果一样皆由临界含水率和风干含水率将其分为3个阶段:稳定阶段、减速阶段和残余阶段,且蒸发量吻合,证明了所提出方法的准确性和实用性,对工程界估计土表蒸发量,确定水流量边界有重要意义。  相似文献   

14.
用BATS模型模拟径流的个例研究   总被引:3,自引:0,他引:3  
刘春蓁  程斌 《水文》1998,(1):8-13
为了解陆气间水热交换在径表成中的作用,本文采用BATS模型模拟了淮河流域山区和平原在1991年汛期50天的暴雨洪水过程,计算了径流,土壤温度和感热,通量,并用常规的汇流计算方法得到了流域出口断量过程线。  相似文献   

15.
Non-dimensional solutions to the equations for the combined advective and diffusive one-dimensional transport of heat and solute in a layer are derived for fixed temperature/concentration on the boundaries and initial conditions of a linear gradient across the layer or a step function at the lower boundary. The solutions allow distinction of regimes in which advective or diffusive transport of either heat or solute predominate as a function of fluid flux, time and a length scale. The much lower diffusive coefficients for solute than heat results in a significant range of length scales and fluid flux rates characterised by advection of matter and diffusion of heat. The advective velocity of a component is a function of its fluid:rock partition coefficient. The most rapidly transported tracers which partition largely into the fluid phase, such as He, will travel orders of magnitude faster than heat or compatible solutes such as oxygen. Geochemical profiles in boundary layer regions where both advective and diffusive transport are significant are shown to be particularly informative as to properties of the rocks related to fluid flow such as porosity, permeability, time scales and fluid flux rates. The importance of advection can be directly estimated from the asymmetry of the geochemical profiles across individual layers.  相似文献   

16.
Two series of freezing column tests with distilled water and municipal solid waste leachate were investigated, using illitic silty clay. Temperature distributions along the freezing column were recorded as a function of distance and time. Unfrozen moisture content and osmotic pressures as a function of temperature were calculated. It was shown that temperature distributions as a function of distance and time were similar in all tests, probably as a result of the limited amount of moisture intake. The amount of moisture intake was directly related to freezing time and temperature gradient in the freezing column. Unfrozen moisture contents, ion concentrations and temperature gradients were identified as the controlling parameters that contributed to the boundary layer transport (BLT) of metal ions in frozen specimens. Na+ concentration profiles were mostly dependent on water movement in the freezing column. The behaviour of Ca2+ and Mg2+ cations was similar to Na+; their concentrations in the soil solution decreased with freezing time due to ion exchange. Temperature, moisture content in an unfrozen boundary layer (UBL), and concentration gradient were taken into consideration in the development of a boundary layer transport model (BLTM). Based on the experimental results and Powell's optimization technique, the diffusivity parameters of various metal ions were calculated. Comparison of experimental and predicted results indicated that the BLTM can predict the migration of metal ions in UBL.  相似文献   

17.
S. Chaudhuri  A. Middey 《Atmósfera》2013,26(1):125-144
Studying the boundary layer is imperative because severe weather in this portion of the atmosphere impacts on environment and various facets of national activities and affects the socioeconomic scenario of a region. Near surface boundary layer characteristics are investigated through the vertical variation of fluxes of heat, moisture, momentum, kinetic energy and Richardson number during the pre-monsoon season (April-May) at Kharagpur (22° 30’ N, 87° 20’ E) and Ranchi (23° 32’ N, 85° 32’ E) with 50 and 32 m tower data, respectively, on thunderstorm and non-thunderstorm days. The temporal variation of fluxes within the boundary layer and the kinetic energy at different logarithmic heights are observed to vary significantly between thunderstorm and non-thunderstorm days. The heat and momentum fluxes show a maximum peak while the moisture flux shows a sudden attenuation just before the occurrence of thunderstorms. The wind field depicts to play a crucial role at the inland station Kharagpur, which is in the proximity of the Bay of Bengal, compared to the station Ranchi, situated over hilly terrain on Chotanagpur. The micrometeorological study of the boundary layer reveals a significant finding pertaining to observe the passage of thunderstorms. It is observed that the ratio of the potential temperature (θ) and equivalent potential temperature (θe) remains confined within a critical range between 0.85 and 0.90 during the passage of thunderstorms.  相似文献   

18.
陈海山  杜新观  孙悦 《地学前缘》2022,29(5):382-400
陆面作为大气运动的下边界,通过动量、热量及物质交换与大气发生复杂的相互作用。陆面过程被认为是影响天气气候的关键过程之一。关于陆面过程对气候的影响已经开展了大量较为深入的研究,相比之下,针对陆面过程对天气的影响研究并没有受到足够的重视。近年来,陆面过程与天气研究也开始受到了越来越多的关注。本文从陆面基本要素、下垫面构成、陆面诱发的局地环流3个方面,回顾了土壤湿度、地形、土地利用、山谷-平原环流等要素和过程对强对流、暴雨、台风、高温热浪等天气事件影响研究的相关进展,以期为今后的研究提供参考。需要指出,尽管此方面的研究已取得了一定进展,但关于陆面过程对天气,尤其是极端(高影响)天气的影响及机制还有待深入研究,进而从陆面过程的角度来理解重要天气形成、发生和发展的机理,从而为数值模式发展和天气预报业务提供更有力的科学支撑。  相似文献   

19.
降雨蒸发作用下膨胀土湿热和裂隙特性室内模拟试验   总被引:1,自引:0,他引:1  
李雄威  王爱军  王勇 《岩土力学》2014,35(9):2473-2478
以广西白色强膨胀土为研究对象,对有、无植被覆盖的膨胀土样进行蒸发、降雨再蒸发试验,研究降雨、蒸发过程对膨胀土湿热和裂隙拓展特性的影响。结果表明,植被覆盖土样表面的反射量比无植被覆盖土样小100 W/m2左右,土样表面温差小5~6 ℃。无植被覆盖土样经历降雨过程后,在相同蒸发条件下,土样表面裂隙率由1.28%增加到3.82%,表层土体累计脱湿量由3.42%增加到11.17%,脱湿速率由0.59%/d增加到1.44%/d,表层土体温度变化平均值由13.1 ℃增加到14.9 ℃。可见,降雨、蒸发过程使得土体水量变化加大,水分迁移速率增加,温度变化加剧,土体趋于破碎。植被覆盖土样经历降雨过程后,在相同蒸发条件下,土样表面并未出现明显裂隙,表层土体累计脱湿量由3.16%变为2.36%,脱湿速率由0.58%/d变为0.37%/d,表层土体温度变化平均值由0.58 ℃变为0.37 ℃。可见,短期降雨、蒸发过程对植被覆盖下膨胀土的持水能力影响不大。  相似文献   

20.
区域蒸发研究综述   总被引:8,自引:3,他引:8       下载免费PDF全文
莫兴国 《水科学进展》1996,7(2):180-185
概述了区域蒸发近年来的研究进展,包括目前估计区域蒸发的4个方面,即①单点蒸发测定的精确化;②利用遥感信息提取参数;③CBL模型模拟地-气水汽交换通量;④植被-大气相互作用模型与区域大气模型结合,模拟区域水分和热量平衡.这些方法从影响区域蒸发的不同方面探讨估算方法,但由于区域尺度下垫面特征的空间变异性,蒸发过程的不确定性,区域蒸发过程仍有待深入认识.本文分析了这些方法的原理和优点,同时也指出了其中存在的问题和今后的研究方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号