首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非饱和土广义有效应力原理   总被引:4,自引:1,他引:3  
赵成刚  蔡国庆 《岩土力学》2009,30(11):3232-3236
综述了非饱和土有效应力的沿革,并就非饱和土有效应力的研究和发展中存在的问题进行了讨论。基于多相孔隙介质理论推导得到的变形功的表达式,提出了非饱和土广义有效应力原理。该原理认为,由非饱和土中的单应力变量的有效应力或双应力变量理论很难唯一地确定非饱和土的变形和强度。广义有效应力原理实质上就是要综合考虑影响非饱和土变形和强度的三种广义应力以及与其对偶的广义变形,给出考虑因素更为全面、理论基础更为坚实的广义有效应力原理。它为非饱和土基本性质的研究和本构方程的建立奠定了坚实而科学的理论基础。  相似文献   

2.
In this research, the interfacial energy is taken into account in the deformation work for unsaturated soils. Based on porous media theory, the thermodynamic balance equations for each phase and the interface are used to derive the work input for unsaturated soils. The work input equation serves as the basis and starting point for the choice of stress state variables, based on which the conjugate stresses and strain increments are derived. The influences of the interfaces on the effective stress and the constitutive law for the liquid phase are then discussed based on the work input equation. The effective stress can be expressed as Bishop's type, and the effective stress parameter is shown to be a function of both the degree of saturation and the interfacial area. The constitutive law for the liquid phase under dynamic condition is also presented. The relationship among interfacial area, saturation, and capillary pressure is proposed to calculate the value of the effective stress. Experimental data obtained from literature are used to validate the proposed model equations. Results show that our findings are in accordance with the existing research. Unlike the phenomenal study, our research has a rigorous theoretical basis, which lays a foundation for further research of unsaturated soils considering the interfacial effects.  相似文献   

3.
Han  Bowen  Cai  Guoqing  Zhou  Annan  Li  Jian  Zhao  Chenggang 《Acta Geotechnica》2021,16(5):1331-1354

The interparticle bonding effect due to water menisci plays an important role in the hydromechanical coupling properties of unsaturated soils. This paper presents an unsaturated hydromechanical coupling model that considers the influence of matric suction, degree of saturation, and microscopic pore structure on the interparticle bonding effect. The enhanced effective stress and bonding variable are selected as constitutive variables. The bonding variable is correlated with the ratio between unsaturated void ratio and saturated void ratio. The deformation characteristics of unsaturated soils are described based on the bounding surface plasticity theory. A soil–water characteristic model that considers deformation and hydraulic hysteresis is integrated into the constitutive model to achieve hydromechanical coupling. The proposed model can effectively describe the hydromechanical coupling characteristics and the meniscus bonding force of unsaturated bimodal structure soils; the model parameters can be easily obtained through routine experiments. The experimental results of unsaturated isotropic compression, the wetting/drying cycle, and unsaturated triaxial shear tests are used to validate the capability of the proposed model.

  相似文献   

4.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
李顺群  栾茂田  杨庆 《岩土力学》2006,27(9):1575-1578
当地下水位上升或地面遇水浸润时,土的饱和度将因毛细作用而变化,以此使土体产生变形。其中由于含水量增加而使土的重度增大,从而引起压缩变形;同时含水量的增加而使基质吸力下降,从而引起土的回弹变形,因此最终变形取决于上述两种变形趋势的综合效应。根据广义Hook定律、Fredlund的双应力状态变量及Brooks和Corey关于基质吸力与饱和度之间的经验关系,建立了K0状态下非饱和土的一维本构模型。将这一模型与分层总和法相结合,可以计算基质吸力变化时土的竖向变形。通过研究发现,非饱和土的地面变形不仅取决于土的性质与土层的厚度,而且依赖于土中吸力变化前后的分布及应力状态等因素。所建议的一维本构模型可以用于非饱和土地基上基础的沉降估算。  相似文献   

6.
The effective stress principle, conventionally applied in saturated soils, is reviewed for constitutive modelling purposes. The assumptions for the applicability of Terzaghi's single effective stress are recalled and its advantages are inventoried. The possible stress frameworks applicable to unsaturated soil modelling are reassessed in a comparative manner, specifically the Bishop's single effective stress, the independent stress variables approach and the generalized stress framework. The latter considerations lead to the definition of a unified stress context, suitable for modelling soils under different saturation states. In order to qualify the implications brought by the proposed stress framework, several experimental data sets are re‐examined in the light of the generalized effective stress. The critical state lines (CSLs) at different saturation states tend to converge remarkably towards a unique saturated line in the deviatoric stress versus mean effective stress plane. The effective stress interpretation is also applied to isotropic paths and compared with conventional net stress conception. The accent is finally laid on a second key feature for constitutive frameworks based on a unified stress, namely the sufficiency of a unique mechanical yield surface besides the unique CSL. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
刘艳  韦昌富  赵成刚  房倩 《岩土力学》2013,34(8):2189-2194
高饱和度的非饱和土中由于气体处于封闭状态,其内部气压的变化必将对土体的行为产生影响。首先,对高饱和度非饱和土特性进行探讨和研究,随后,在已有非饱和土模型框架基础上,采用广义有效应力原理,建立一个适用于高饱和度条件下的非饱和土的弹塑性本构模型。模型中引入气相耗散的影响,在硬化方程中考虑封闭气体压力改变的影响。最后,利用已有的试验结果来对模型进行验证,并将模型预测结果与前人模型进行对比,表明模型预测可以很好地预测土体的行为,尤其是在高饱和度条件下其结果比其他模型更加接近实际情况。  相似文献   

8.
非饱和土应力变量选取原则刍议   总被引:2,自引:0,他引:2  
谢新宇  刘斌  周建 《岩土力学》2012,33(8):2269-2276
在非饱和土本构模型研究中,所选取的变量是否是非饱和土合适的应力变量往往被研究人员所忽视,这会阻碍本构模型的进一步发展。从土体的微观结构、能量守衡及力学平衡这3方面对非饱和土应力变量进行研究,以此提出了非饱和土应力变量选取应遵循的3个原则,强调指出非饱和土应力变量与应力状态变量的区别,并对本构模型研究中常用的应力变量进行分析,发现基质吸力、净法向应力并非为非饱和土应力变量,而有效应力和吸应力为其应力变量。建议使用有效应力来建立本构关系,其除了能满足文中提出的选取原则外,还能与饱和土理论之间有很好的过渡。文中的非饱和土应力变量选取原则还不成熟,但其重要性不容忽视,该研究还有待进一步补充和完善。  相似文献   

9.
A new constitutive model is developed for the mechanical behaviour of unsaturated soils based on the theory of hypoplasticity and the effective stress principle. The governing constitutive relations are presented and their application is demonstrated using several experimental data from the literature. Attention is given to the stiffening effect of suction on the mechanical response of unsaturated soils and the phenomenon of wetting‐induced collapse. All model parameters have direct physical interpretation, procedures for their quantification from test data are highlighted. Quantitative predictions of the model are presented for wetting, drying and constant suction tests. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical model based on the theory of mixtures is proposed for the nonlinear dynamic analysis of flow and deformation in unsaturated porous media. Starting from the conservation laws, the governing differential equations and the finite element incremental approximations suitable for nonlinear large deformation static and dynamic analyses are derived within the updated Lagrangian framework. The coupling between solid and fluid phases is enforced according to the effective stress principle taking suction dependency of the effective stress parameter into account. The effect of hydraulic hysteresis on the effective stress parameter and soil water characteristic curve is also taken into account. The application of the approach is demonstrated through numerical analyses of several fundamental nonlinear problems and the results are compared to the relevant analytical solutions. The effects of suction, large deformations and hydraulic hysteresis on static and dynamic response of unsaturated soils are particularly emphasized.  相似文献   

11.
有效应力参数的合理确定是非饱和土有效应力研究的重要内容。然而,现有的有效应力参数未能较好地考虑孔隙水的微观赋存形态对有效应力的影响。为此,分析了孔隙水的微观赋存形态,明确了孔隙水可分为收缩膜、吸附水和毛细水,建立了非饱和粉土的扩展三相孔隙介质模型,即孔隙气、毛细水和广义土骨架。基于该模型,采用分相平衡分析法,推导了非饱...  相似文献   

12.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A thermodynamically consistent extension of the constitutive equations of saturated soils to unsaturated conditions is often worked out through the use of a unique ‘effective’ interstitial pressure, accounting equivalently for the pressures of the saturating fluids acting separately on the internal solid walls of the pore network. The natural candidate for this effective interstitial pressure is the space averaged interstitial pressure. In contrast experimental observations have revealed that, at least, a pair of stress state variables was needed for a suitable framework to describe stress–strain–strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the invasion of the soil by the liquid water phase through the retention curve; two effective stresses, which are required to describe the soil deformation at water saturation held constant. However a simple assumption related to the plastic flow rule leads to the final need of only a Bishop-like effective stress to formulate the stress–strain constitutive equation describing the soil deformation, while the retention properties still involve the suction and possibly the deformation. Commonly accepted models for unsaturated soils, that is the Barcelona Basic Model and any approach based on the use of an effective averaged interstitial pressure, appear as special extreme cases of the thermodynamic formulation proposed here.  相似文献   

14.
The definition of a consistent stress framework is an essential prerequisite to the constitutive modelling of unsaturated soils. It is proposed to clarify the effective stress lexicon commonly used for unsaturated soils, one of the purposes being to contribute to a more accurate definition and understanding of conventional Bishop’s stress. The so-called generalised effective stress is formulated on the basis of previous studies and set within a complete constitutive context. A point by point comparison between Bishop’s stress and generalised framework is led. The usual analogies between suction effects, cementation and hardening are also discussed. Suction is shown not to be a hardening variable but rather a shape parameter for the yield surface expressed in the matric suction versus mean effective stress plane. Some advantages of the generalised effective stress are finally reviewed, with a particular accent laid on the uniqueness of the yield limit and the built-in hydro-mechanical coupling.  相似文献   

15.
申存科  迟世春  贾宇峰 《岩土力学》2010,31(7):2111-2115
粗粒土在较大的应力条件下容易产生颗粒破碎现象,而现有的大多数模型都没有考虑剪切过程中的颗粒破碎。模型将塑性功引入土体受力变形过程的能量方程中,推导得到土体流动法则。采用直线型屈服轨迹和非相关联流动法则,利用不排水应力路径计算得到硬化函数,建立了一个考虑颗粒破碎的粗粒土本构模型。对比分析表明:该模型对粗粒土在各种围压下的应力-应变和体应变计算结果与试验曲线吻合较好。  相似文献   

16.
A double structure generalized plasticity model for expansive materials   总被引:1,自引:0,他引:1  
The constitutive model presented in this work is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of two pore levels. The distinction between the macro‐ and microstructure provides the opportunity to take into account the dominant phenomena that affect the behaviour of each structural level and the main interactions between them. The microstructure is associated with the active clay minerals, while the macrostructure accounts for the larger‐scale structure of the material. The model has been formulated considering concepts of classical and generalized plasticity theories. The generalized stress–strain rate equations are derived within a framework of multidissipative materials, which provides a consistent and formal approach when there are several sources of energy dissipation. The model is formulated in the space of stresses, suction and temperature; and has been implemented in a finite element code. The approach has been applied to explaining and reproducing the behaviour of expansive soils in a variety of problems for which experimental data are available. Three application cases are presented in this paper. Of particular interest is the modelling of an accidental overheating, that took place in a large‐scale heating test. This test allows the capabilities of the model to be checked when a complex thermo‐hydro‐mechanical (THM) path is followed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress–strain behaviour and the effects of deformation on the soil–water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress–strain behaviour is considered. However, until now, few models predict the stress–strain and soil–water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour.  相似文献   

18.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
董建军  邵龙潭 《岩土力学》2006,27(Z1):95-98
应力路径对土的强度和变形性质具有重要影响。相对于饱和土而言,控制吸力条件下的非饱和土三轴压缩状态的应力路径研究更加复杂。随着非饱和土本构理论的不断发展,理论和试验研究结果表明,非饱和土弹塑性本构模型可以用来近似地描述非饱和土的强度和变形性质。因而,运用非饱和土弹塑性本构模型对控制吸力条件下的3种非饱和土三轴压缩应力路径试验进行数值模拟是一种有效的理论研究手段。采用Barcelona模型能够对此类试验进行较好的数值模拟,其研究结果表明,在控制吸力条件的三轴压缩状态下应力路径对非饱和土的强度和变形性质具有重要影响。  相似文献   

20.
非饱和土力学中几个基本问题的探讨   总被引:3,自引:0,他引:3  
近些年非饱和土力学的研究非常活跃,但对一些基本问题的认识并不一致,有时甚至概念混淆。针对非饱和土力学的几个基本问题:非饱和土状态变量的选择、非饱和土有效应力变量的选择、吸力概念的界定和轴平移技术的局限性、非饱和土的结构的表征方法等问题进行了分析和探讨。其中非饱和土状态变量和有效应力的选择对于非饱和土力学的理论和相应本构模型的建立具有重要影响,因此,首先深入讨论了这一问题,概括论述了非饱和土有效应力的演变并深入探讨了目前各种形式有效应力的优缺点。其次,指出由于受负压孔隙水气化(液-气相变化)的影响,在实际场地中大于某一界限值的基质吸力是不存在的;目前被广泛使用的轴平移试验技术却掩盖了这一情况,而基于此所建立的非饱和土强度和变形理论的适用性需要进一步的研究和论证。再次,指出非饱和土的结构除了包括组构和颗粒之间作用力的综合效应外,还建议增加孔隙水和孔隙气的分布以及各相之间的相互作用和物理-化学作用。最后对一些容易混淆的概念进行了梳理。其目的是希望国内同行在今后的研究中对这些问题加以关注,并建立正确的认识,促进非饱和土力学沿着正确的方向发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号