首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Wu  Hang  Trigg  Mark A.  Murphy  William  Fuentes  Raul 《Landslides》2022,19(3):555-572

To address the current data and understanding knowledge gap in landslide dam inventories related to geomorphological parameters, a new global-scale landslide dam dataset named River Augmented Global Landslide Dams (RAGLAD) was created. RAGLAD is a collection of landslide dam records from multiple data sources published in various languages and many of these records we have been able to precisely geolocate. In total, 779 landslide dam records were compiled from 34 countries/regions. The spatial distribution, time trend, triggers, and geomorphological characteristic of the landslides and catchments where landslide dams formed are summarized. The relationships between geomorphological characteristics for landslides that form river dams are discussed and compared with those of landslides more generally. Additionally, a potential threshold for landslide dam formation is proposed, based on the relationship of landslide volume to river width. Our findings from our analysis of the value of the use of additional fluvial datasets to augment the database parameters indicate that they can be applied as a reliable supplemental data source, when the landslide dam records were accurately and precisely geolocated, although location precision in smaller river catchment areas can result in some uncertainty at this scale. This newly collected and supplemented dataset will allow the analysis and development of new relationships between landslides located near rivers and their actual propensity to block those particular rivers based on their geomorphology.

  相似文献   

2.
Breaching parameters of landslide dams   总被引:11,自引:5,他引:6  
Landslide dams pose enormous risks to the public because of the potentially catastrophic floods generated by breaching of such dams. The need to better understand the threats of landslide dams raises questions about the proper estimation of breaching parameters (breach size, breaching duration, and peak outflow rate) of landslide dams and the feasibility of applying models for estimating the breaching parameters of man-made earthen dams to landslide dams. This paper aims to answer these two questions. In this study, a database of 1,239 landslide dams, including 257 cases formed during the 12 May 2008 Wenchuan earthquake, has been compiled. Based on records of 52 landslide dam cases with breaching information in the database, empirical models for estimating the breaching parameters of landslide dams are developed. A comparison study between landslide dams and man-made earth and rockfill dams is conducted, which shows that the models for man-made earth and rockfill dams are not suitable for estimating the breaching parameters of landslide dams. Two case studies are presented to show the application of the set of empirical models developed in this paper.  相似文献   

3.
滑坡堰塞坝是大型滑坡堆积体堵塞河道形成的土石坝。正、反粒序结构作为大型远程滑坡所特有的2种具有显著差异的地质结构特征,2种情况下坝体的破坏模式差异及稳定性影响因素亟需试验研究。文章通过室内水槽物理模型实验,对比不同粒径、不同结构的滑坡堰塞坝坝体的破坏过程差异,探究了正、反粒序结构条件下堰塞坝的稳定性差异、破坏模式及影响因素。研究结果表明:(1)堰塞坝破坏模式的变化取决于浸润线在下游坡面的出露位置,相比上游水位有一定的延迟性;(2)正、反粒序堰塞坝的破坏模式取决于坡体渗流与下游坡面临界起动坡降的关系;(3)细砂层的位置分布,不同埋深细砂层的起动临界坡降差异和细砂与中粗砂的孔隙率差异是造成正、反粒序坝体破坏差异的主要原因。该研究成果可为大型滑坡堰塞坝的防灾减灾提供理论指导。  相似文献   

4.
汶川八级地震地质灾害研究   总被引:118,自引:15,他引:103  
汶川地震触发了15000多处滑坡、崩塌、泥石流,估计直接造成2万人死亡。地质灾害隐患点达10000余多处,以崩塌体增加最为显著,反映出地震对山区高陡斜坡的影响差异性非常大,在山顶上的放大作用非常显著。通过综合分析堰塞湖库容、滑坡坝高以及坝体物质组成和结构,对地震形成的33处坝高大于10m的滑坡堰塞湖进行了评估,划分出极高、高、中和低4种溃决危险。汶川地震滑坡滑床往往不具连续平整的滑面,尖点撞击是极震区滑坡的一大共性,可以分为勺型滑床、凸型滑床和阶型滑床等类型。据实地调查,滑坡附近震毁建筑物垂向震动非常明显,具有地震抛掷撞击崩裂高速滑流三阶段特征。在高速滑流中,发生3种效应:(1)高速气垫效应,滑坡体由较大块石和土构成,具有一定厚度,飞行行程可达1~3km;(2)碎屑流效应,撞击粉碎的土石呈流动状态,特别是含水丰富时,形成长程流滑;(3)铲刮效应,巨大撞击力导致下部岩体崩裂,形成新滑坡、崩塌,但是,其厚度不大,滑床起伏不平。本文以北川城西滑坡和青川东河口滑坡为例,分析了地震滑坡高速远程滑动及成灾机理。北川县城城西滑坡导致1600人被埋死亡,数百间房屋被毁,是汶川地震触发的最严重的滑坡灾难,举世罕见。青川东河口滑坡碎屑流是汶川地震触发的较为典型的高速远程复合型滑坡,滑程约2400m,高速碎屑流冲抵清江河左岸,形成滑坡坝,致使7个村庄被埋,约400人死亡。  相似文献   

5.
Landslides may obstruct river flow and result in landslide dams; they occur in many regions of the world. The formation and disappearance of natural lakes involve a complex earth–surface process. According to the lessons learned from many historical cases, landslide dams usually break down rapidly soon after the formation of the lake. Regarding hazard mitigation, prompt evaluation of the stability of the landslide dam is crucial. Based on a Japanese dataset, this study utilized the logistic regression method and the jack-knife technique to identify the important geomorphic variables, including peak flow (or catchment area), dam height, width and length in sequence, affecting the stability of landslide dams. The resulting high overall prediction power demonstrates the robustness of the proposed logistic regression models. Accordingly, the failure probability of a landslide dam can also be evaluated based on this approach. Ten landslide dams (formed after the 1999 Chi-Chi Earthquake, the 2008 Wenchuan Earthquake and 2009 Typhoon Morakot) with complete dam geometry records were adopted as examples of evaluating the failure probability. The stable Tsao-Ling landslide dam, which was induced by the Chi-Chi earthquake, has a failure probability of 27.68% using a model incorporating the catchment area and dam geometry. On the contrary, the Tangjiashan landslide dam, which was artificially breached soon after its formation during the Wenchuan earthquake, has a failure probability as high as 99.54%. Typhoon Morakot induced the Siaolin landslide dam, which was breached within one hour after its formation and has a failure probability of 71.09%. Notably, the failure probability of the earthquake induced cases is reduced if the catchment area in the prediction model is replaced by the peak flow of the dammed stream for these cases. In contrast, the predicted failure probability of the heavy rainfall-induced case increases if the high flow rate of the dammed stream is incorporated into the prediction model. Consequently, it is suggested that the prediction model using the peak flow as causative factor should be used to evaluate the stability of a landslide dam if the peak flow is available. Together with an estimation of the impact of an outburst flood from a landslide-dammed lake, the failure probability of the landslide dam predicted by the proposed logistic regression model could be useful for evaluating the related risk.  相似文献   

6.
Dam-breaches that cause outburst floods may induce downstream hazards. Because landslide dams can breach soon after they are formed, it is critical to assess the stability quickly to enable prompt action. However, dam geometry, an essential component of hazard evaluation, is not available in most cases. Our research proposes a procedure that utilizes post-landslide orthorectified remote sensing images and the pre-landslide Digital Terrain Model in the Geographic Information System to estimate the geometry of a particular dam. The procedure includes the following three modules: (1) the selection of the reference points on the dam and lake boundaries, (2) the interpolation of the dam-crest elevation, and (3) the estimation of dam-geometry parameters (i.e., the height, length, and width), the catchment area, the volumes of barrier lake and landslides dam. This procedure is demonstrated through a case study of the Namasha Landslide Dam in Taiwan. It was shown the dam-surface elevation estimated from the proposed procedure can approximate the elevation derived from profile leveling after the formation of the landslide dam. Thus, it is feasible to assess the critical parameters required for the landslide dam hazard assessment rapidly once the ortho-photo data are available. The proposed procedure is useful for quick and efficient decision making regarding hazard mitigation.  相似文献   

7.
天然土石坝稳定性初步研究   总被引:13,自引:0,他引:13  
滑坡堵塞江河形成的天然土石坝是自然作用的产物,不同于人工土石坝,天然土石坝形成后有些存在几十年,几百年,有些形成后不久就溃决,这与坝体本身的性质和河水入流量有关,依据野外实测资料,证了土石坝的稳定性的主要是同土石坝的物质组成,几何形状和堰塞湖入流量等因素决定的,这一研究为天然土石坝的稳定性预测奠定了基础。  相似文献   

8.
Global climate change has increased the frequency of abnormally high rainfall; such high rainfall events in recent years have occurred in the mountainous areas of Taiwan. This study identifies historical earthquake- and typhoon-induced landslide dam formations in Taiwan along with the geomorphic characteristics of the landslides. Two separate groups of landslides are examined which are classified as those that were dammed by river water and those that were not. Our methodology applies spatial analysis using geographic information system (GIS) and models the geomorphic features with 20?×?20 m digital terrain mapping. The Spot 6 satellite images after Typhoon Morakot were used for an interpretation of the landslide areas. The multivariate statistical analysis is also used to find which major factors contribute to the formation of a landslide dam. The objective is to identify the possible locations of landslide dams by the geomorphic features of landslide-prone slopes. The selected nine geomorphic features include landslide area, slope, aspect, length, width, elevation change, runout distance, average landslide elevation, and river width. Our four geomorphic indexes include stream power, form factor, topographic wetness, and elevation–relief ratio. The features of the 28 river-damming landslides and of the 59 non-damming landslides are used for multivariate statistical analysis by Fisher discriminant analysis and logistic regression analysis. The principal component analysis screened out eleven major geomorphic features for landslide area, slope, aspect, elevation change, length, width, runout distance, average elevation, form factor, river width, stream power, and topography wetness. Results show that the correctness by Fisher discriminant analysis was 68.0 % and was 70.8 % by logistic regression analysis. This study suggests that using logistic regression analysis as the assessment model for identifying the potential location of a landslide dam is beneficial. Landslide threshold equations applying the geomorphic features of slope angle, angle of landslide elevation change, and river width (H L/W R) to identify the potential formation of natural dams are proposed for analysis. Disaster prevention and mitigation measures are enhanced when the locations of potential landslide dams are identified; further, in order to benefit such measures, dam volume estimates responsible for breaches are key.  相似文献   

9.
Risk assessment development considering the failure of landslide dams often requires the estimation of peak outflow through the breach. The empirical equations based on data from case studies tend to be the first direct approach. This paper conducted an uncertainty analysis when these empirical relations were utilized to predict the peak outflow of a breached landslide dam. The results suggest that the relations derived from manmade dams or embankments typically overestimate the peak outflow about 1/5 to 3/4 of an order of magnitude; and the relations derived from the database of landslide dams have much smaller mean prediction errors and also exhibit broad uncertainty bands. Application of the uncertainly analysis was illustrated by the Tangjiashan landslide dammed lake, formed during 2008 Wenchuan earthquake. In addition, the predicted results from Eq. 1 deduced herein were considered to be the reliable estimate of peak outflow through the breach of landslide dam.  相似文献   

10.
Shan  Yibo  Chen  Shengshui  Zhong  Qiming  Mei  Shengyao  Yang  Meng 《Landslides》2022,19(6):1491-1518

The existing empirical models do not consider the influence of material composition of landslide deposits on the peak breach flow due to the uncertainty in the material composition and the randomness of its distribution. In this study, based on the statistical analyses and case comparison, the factors influencing the peak breach flow were comprehensively investigated. The highlight is the material composition-based classification of landslide deposits of 86 landslide cases with detailed grain-size distribution information. In order to consider the geometric morphology of landslide dams and the potential energy of dammed lakes, as well as the material composition of landslide deposits in an empirical model, a multiple regression method was applied on a database, which comprises of 44 documented landslide dam breach cases. A new empirical model for predicting the peak breach flow of landslide dams was developed. Furthermore, for the same 44 documented landslide dam failures, the predicted peak breach flow obtained by using the existing empirical models for embankment and landslide dams and that obtained by using the newly developed model were compared. The comparison of the root mean square error (Erms) and the multiple coefficient of determination (R2) for each empirical model verifies the accuracy and rationality of the new empirical model. Furthermore, for fair validation, several landslide dam breach cases that occurred in recent years in China and have reliable measured data were also used in another comparison. The results show that the new empirical model can reasonably predict the peak breach flow, and exhibits the best performance among all the existing empirical models for embankment and landslide dam breaching.

  相似文献   

11.
Generally landslide dams which exist for several hundreds to thousands of years are considered as stable. We show with an example from the Argentine Andes that such dams can exist for several thousands of years but still may fail catastrophically. Multiple rock avalanches impounded two lakes with surface areas of ~8 km2 and ~600 km2, respectively, in Las Conchas valley, NW Argentina. Surface exposure dating (SED) by 10Be of the rock-avalanche deposits or landslide scars indicates that these landslides occurred at 15,300±2,000 yr and 13,550±900 yr. The dams were stable during a strong earthquake, as suggested by seismites within related lake sediments and by multiple coeval landslides in this region, which occurred at ~7.5 kyr. However, when a further rock-avalanche fell into the lower, smaller lake at 4,800±500 yr the dam downriver was destroyed, presumably by the resulting tsunami wave. The resulting flood also destroyed an additional rock-fall dam which had formed at ~5,630 yr 14C cal BP 30 km downriver. The new dam formed by the second rock avalanche was eroded prior to 3,630 yr 14C cal BP. This dam erosion coincides with an important climatic shift towards more humid conditions in the Central Andes. Our results show that instead of direct effects of strong seismicity on landslide dams, (1) landsliding into a landslide-dammed lake, (2) abrupt hydrological changes, and (3) climate change towards conditions related to enhanced run-off are processes which can produce failures of quasi-stable natural dams.  相似文献   

12.
A two-layer model for simulating landslide dam over mobile river beds   总被引:1,自引:0,他引:1  
Wei Liu  Siming He 《Landslides》2016,13(3):565-576
Landslides can block mountainous streams and form landslide dams to threaten downstream residents. It is necessary for reliable methods to predict landslide dam dynamic for risk assessment. In this paper, we present a two-layer model of Savage–Hutter type to simulate the dynamic evolution of landslide dam which take account of the erosion of river bed. The two-layer shallow water system is derived by depth-averaging the incompressible Navier–Stokes equations with the hydrostatic assumption integrated of the erosion model of river bed. The effect of excess pore water pressure is considered in the erosion process. A high order accuracy scheme based on Roe-type solver is used to discretize the present model. Finally, several numerical tests are performed to verify the stability of the algorithm and reliability of the model. Numerical results indicate that the erosion effect enhances the huge destructiveness of landslide and increase the possibility of river blocked by landslides. The impact of excess pore water pressure on erosion process should be considered.  相似文献   

13.
Stability of landslide dams and development of knickpoints   总被引:2,自引:0,他引:2  
The Wenchuan earthquake triggered many landslides and numerous avalanches and created 100 odd quake lakes. The quake lakes may be removed or preserved. The removal strategy was applied to several large landslide dams, which were dangerous because massive amounts of water pooled up in the quake lakes. The dams could eventually fail under the action of dam outburst flooding, potentially endangering the lives of people in the downstream reaches. This paper studied the stability of landslide dams and the development of knickpoints by field investigations and experiments, and analyzing satellite images. The study concluded that if landslide dams were preserved, they would develop into knickpoints and act as a primary control of riverbed incision and, thus, reduce the potential of new landslide. The stability of landslide dams depends mainly on the development of the step-pool system and stream power of the flood flow. If a landslide dam consists of many boulders, a step-pool system may develop on the spillway channel of the dam, which would maximize the resistance, consume most of the flow energy and consequently protect the dam from incision. The development degree of the step-pool system is represented by a parameter S p, which was measured with a specially designed instrument. A preservation ratio of landslide dams is defined as the ratio of preserved height after flood scouring to the original height of the dam. For streams with peak flood discharge lower than 30 m3/s, the preservation ratio is linearly proportional to S p. For rivers with a peak flood discharge higher than 30 m3/s (30–30,000 m3/s), the minimum S p value for stable channel increases with log p, in which p is the unit stream power. For a landslide dam with a poorly developed step-pool system, S p is smaller than the minimum value and the outburst flood incises the spillway channel and causes failure of the dam. For preserved landslide dams, sediment deposits in the quake lakes. A landslide dam may develop into a knickpoint if it is stabilized by long-term action of the flow. Large knickpoints can totally change the fluvial processes and river morphology. Uplift of the Qinghai–Tibetan Plateau has caused extensive channel bed incision along almost all rivers. For many rivers, the incision has been partly controlled by knickpoints. Upstream reaches of a knickpoint have a new and unchanging base level. This brings about a transition from degradation to aggradation and from vertical bed evolution to horizontal fluvial process. Multiple and unstable channels are prominent in the reaches, upstream of the knickpoints. If hundreds of landslide dams occurred simultaneously on a reach of a mountain river, the potential energy of bank failure and the slope erosion would be greatly reduced and sediment yield from the watershed may be reduced to nearly zero. The quake lakes may be preserved long term and become beautiful landscapes. Streams with long-term unfilled quake lakes have good aquatic ecology.  相似文献   

14.
通过模型实验,探讨了松散土坡3种不同结构特征条件下(均匀坡体(坡体物料均匀混合)、平行坡体(土层成层且层面与滑面平行)和斜交坡体(土层成层且层面与滑面斜交))形成滑坡堰塞体的动力过程和堆积特征,通过分区域取样及三维扫描技术研究了堰塞体的物质分布规律与形态特征。研究结果表明:堰塞体堆积特征与坡体特征存在紧密联系,堰塞体纵向(沿主沟道方向)和横向(沿滑坡运动方向)上的物质分布与坡体纵向和横向的物质分布特征基本对应;在垂向(表层到底部)上,由于不同坡体条件下滑坡的动力过程和机理不同,从而导致堰塞体堆积特征存在一定区别。均匀坡体和平行坡体呈整体启动模式,运动过程中物料间存在垂向渗透和交换作用,导致堰塞体物质在垂向上呈明显的上粗下细反粒序分布特征,堰塞体横剖面多呈平坦型和倾斜型。斜交坡体呈分层启动模式,运动堆积过程中保持原有层序,粗、细颗粒先后启动条件下颗粒间存在推挤、爬升和水平渗透作用,使得堰塞体更加密实且垂向上也呈现反粒序分布特征,横剖面多呈起伏型。本研究为滑坡堰塞体稳定性快速评估和复原滑坡初始状态提供依据。  相似文献   

15.
权威  谭跃虎  李二兵  徐辉 《岩土力学》2013,34(1):250-258
以雅砻江卡拉水电站为例,针对滑坡群风险在水电工程坝址比选时的量化评价问题,在考虑滑坡体危险性分析和易损性分析的基础上,引入滑坡体工程影响系数、重要性系数、距离模数、滑坡体状况系数4个指标参数,综合考虑滑坡体客观情况与人类活动的影响,建立以年期望损失为指标的水电工程滑坡风险评价体系。在以坝址安全风险指标、堵江引起发电量损失指标与清淤损失指标和涌浪破坏损失指标为标准的综合评价方法中,运用安全与经济相平衡原则,得出基于滑坡风险评价的坝址比选结果。经实例计算,采用改进后的评价方法可得同一量纲下的计算分析比常规方法更具可比性,综合考虑可为坝址比选提供依据。  相似文献   

16.
The Attabad landslide dam caused significant property losses and many human casualties in Pakistan, and also greatly affected the operation of the China-Pakistan Karakoram Highway (KKH). This paper discusses the risk of dam breach and hazards to the KKH project construction site following a dam breach. The paper examines the following three topics. (1) The geomorphologic dimensionless blockage index (DBI) and the analogy method were used to analyze the stability of the Attabad landslide dam. The long-term behaviors of landslide dams downstream of the Attabad landslide dam indicate that the risk of a dam breach exists, but the probability of a total dam failure is low. (2) The peak discharge of a potential breach of the Attabad landslide dam was calculated for scenarios in which 1/4, 1/3, 1/2, and total failure of the dam was breached. The potential breach discharge decreases with the downstream distance. (3) The potential impacts of the landslide dam breach on the KKH project construction site were analyzed. Based on the composition of the landslide dam, the probability of a 1/3 dam breach is high. To ensure the safety of downstream areas, disaster preparedness plans that correspond to the 1/2 dam breach scenario should be developed. Based on experience in addressing the landslide dam that was caused by the Wenchuan Earthquake, artificial controlled drainage measures are suggested and provide a technical reference for addressing the Attabad landslide dam and achieving recovery and normal operation of KKH.  相似文献   

17.
山区特大地震往往导致大量堰塞湖,例如2008年汶川地震形成了至少257个堰塞湖,并且主震后发生了大量余震,这些余震可能会影响堰塞坝体的安全状态。通过大型振动台模型试验,研究了余震及库水耦合作用下堰塞坝体的破坏及溃决机理和过程。共进行了两组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体Ⅰ)和基本不含黏粒且颗粒较大(坝体Ⅱ)的两种坝体。在不同水位条件下进行振动台试验。研究成果表明:(1)地震和库水耦合作用下堰塞坝体的主要溃决方式是漫顶溢流,主要溃决过程为地震力使松散的堰塞坝体发生沉陷,库水渗入使沉陷加剧,最终水位上升漫过坝顶发生溢流冲蚀破坏。(2)地震一般不会直接引起堰塞坝体的破坏。地震力对坝体稳定性的主要影响是使坝体发生沉陷变形。在地震和库水耦合作用下,坝体沉陷比单一因素作用下更为剧烈,因此地震作用会使漫顶溢流提前发生。(3)地震和库水耦合作用下坝体Ⅰ沉陷量大于坝体Ⅱ,说明现实中由大粒径岩土体组成的堰塞坝体具有更好的稳定性。  相似文献   

18.
堰塞坝是由于崩塌、滑坡、泥石流等形成的天然坝体,不同于人工土石坝,堰塞坝坝体结构松散,颗粒级配不均匀,在较高水头作用下坝体可能发生渗透破坏而导致溃坝,严重威胁下游人民群众的生命及财产安全。由于堰塞坝存在较大粒径颗粒,常规的渗透试验装置难以满足要求,本文研制了直径为60cm的大直径渗透试验仪,进行了不同堰塞坝级配材料的渗透破坏试验,并探讨了堰塞坝体材料渗透特性的主要影响因素。研究发现:(1)堰塞坝材料的渗透破坏形式取决于材料级配,粗颗粒含量较多时为管涌破坏,细颗粒含量较多或粒径缺失时为流土破坏;(2)堰塞坝渗透系数随干密度的增大而减小,主要取决于细料填充粗料孔隙的程度,单独使用不均匀系数或曲率系数不适用于评价渗透系数的变化;(3)基于试验数据提出了用于堰塞坝渗流破坏形式的判别公式,并推导出堰塞坝管涌破坏的临界水力坡降计算公式。  相似文献   

19.
地震与非地震诱发滑坡的运动特征对比研究   总被引:1,自引:1,他引:0  
樊晓一 《岩土力学》2010,31(Z2):31-37
针对不同诱发机制的滑坡运动特征差异,以滑坡的总斜率和阻止系数为评价指标,分析滑坡的总斜率、阻止系数与滑坡规模、总能量的关系,对比研究了地震和非地震滑坡的总斜率、地形阻止系数的特征。研究结果表明:地震与非地震滑坡的规模越大在运动过程中受到的阻止作用越小;地震滑坡和非地震滑坡的总斜率都随滑坡规模和总能量增加而减小,但地震滑坡减小的速率大于非地震滑坡;地震滑坡的平均阻止系数约为0.4~0.5,而非地震滑坡的平均阻止系数约为同规模地震滑坡的40%~50%。因此,滑坡的运动特征不仅受滑坡规模及总能量控制,还显著地受滑坡的诱发机制和地形阻止等因素的影响。  相似文献   

20.
周礼  范宣梅  许强  杨帆  郭晨 《工程地质学报》2019,27(6):1395-1404
2018年10月、11月于金沙江川藏交界处江达县波罗乡白格村先后发生两次体积约2400×104 m3和850×104 m3的滑坡,两次滑坡平均运动距离1400 m,堵塞金沙江形成堰塞湖。首次形成的堵江滑坡坝天然溃决,未造成人员伤亡;然而第2次滑坡堵塞第1次滑坡自然溃口,导致堰塞湖库容迅速增加到3.85×108 m3。政府部门立即开展抢险工作,通过人工修建溢洪道的方法成功泄洪,极大程度上降低洪水风险。本文利用PFC3D颗粒流软件模拟两次滑坡的发生、运动、堆积过程,并在反演结果的基础上对白格滑坡滑源区残留潜在不稳定部分未来失稳的运动路径和堆积范围进行预测,对其危险性进行科学评价。结果表明:(1)滑坡在重力作用下失稳,除了受初始势能的影响外,微地貌也是决定滑坡运动路径与距离的关键因素之一;(2)PFC3D颗粒流数值模拟方法适用于类似于白格滑坡这类碎屑流类型的滑坡,两次滑坡反演得到的堆积厚度、堆积范围均与真实结果相近;(3)利用两次事件反演所得参数,可以预测若滑源区潜在不稳定部分同时失稳,则形成约70 m高的滑坡坝,可能再次堵塞金沙江。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号