首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A detailed analysis of the pre-failure behavior of the 3 December 2013 rockfall (1,012 m3) occurred on Puigcercós pilot study area (Catalonia, Spain) is presented. The exact date of failure was obtained based on a photographic monitoring performed every 4 h. The long-term monitoring (2,217 days) of the rock slope carried out by a Terrestrial LiDAR allowed the early detection of both pre-failure deformation and precursory rockfalls preceding the final failure. By means of the analysis of the pre-failure deformation, four different deformed areas were detected and the tertiary creep phase was observed in three of them. An attempt to predict the time to failure was performed using the Fukuzono’s (1985) method. Furthermore, the temporal evolution of the precursory rockfalls occurred in those four areas during the progressive failure showed a close resemblance with the exponential pattern of the cumulated displacements at tertiary creep stage. Finally, the study of the meteorological conditions did not show any single triggering factor associated with the final failure. Reversely, the increase in the occurrence of precursory rockfalls on several areas of the slope together with the observed acceleration on the deformation pattern reinforce the role of a progressive degradation of the stability conditions, which ultimately leaded to the 3 December rockfall event.  相似文献   

2.
We present a long-term spatio-temporal analysis of rock slope evolution using a Terrestrial LiDAR aiming to improve our understanding of the link between pre-failure deformation and the spatial prediction of rockfalls. We monitored the pilot study area located at the Puigcercós cliff (Catalonia, Spain) over a period of 1,705 days and detected the deformation of nine different cliff regions together with a high rockfall activity. An exact match was observed between the progressively deformed areas and the regions recently affected by three of the highest magnitude rockfall events, demonstrating a causal relationship between pre-failure deformation and rockfall occurrence. These findings allowed us to make a forward spatial prediction of future failures, hypothesizing a high probability of failure in the six remaining regions. We observed an exponential acceleration of the deformation close to failure, in accordance with tertiary creep theory. However, the temporal analysis of the deformed areas showed a complex and variable behavior, so no exact prediction of the date of failure can yet be made. Our findings have broadened our understanding of the pre-failure behavior of rockfalls and have clear implications for the future implementation of early warning systems.  相似文献   

3.
There exists a transition between rockfalls, large rock mass failures, and rock avalanches. The magnitude and frequency relations (M/F) of the slope failure are increasingly used to assess the hazard level. The management of the rockfall risk requires the knowledge of the frequency of the events but also defining the worst case scenario, which is the one associated to the maximum expected (credible) rockfall event. The analysis of the volume distribution of the historical rockfall events in the slopes of the Solà d’Andorra during the last 50 years shows that they can be fitted to a power law. We argue that the extrapolation of the F-M relations far beyond the historical data is not appropriate in this case. Neither geomorphological evidences of past events nor the size of the potentially unstable rock masses identified in the slope support the occurrence of the large rockfall/rock avalanche volumes predicted by the power law. We have observed that the stability of the slope at the Solà is controlled by the presence of two sets of unfavorably dipping joints (F3, F5) that act as basal sliding planes of the detachable rock masses. The area of the basal sliding planes outcropping at the rockfall scars was measured with a terrestrial laser scanner. The distribution of the areas of the basal planes may be also fitted to a power law that shows a truncation for values bigger than 50 m2 and a maximum exposed surface of 200 m2. The analysis of the geological structure of the rock mass at the Solà d’Andorra makes us conclude that the size of the failures is controlled by the fracture pattern and that the maximum size of the failure is constrained. Two sets of steeply dipping faults (F1 and F7) interrupt the other joint sets and prevent the formation of continuous failure surfaces (F3 and F5). We conclude that due to the structural control, large slope failures in Andorra are not randomly distributed thus confirming the findings in other mountain ranges.  相似文献   

4.
Rockfall hazards increase the risk of train derailment along railway corridors in western Canada. In this study, repeated terrestrial laser scanning (TLS) datasets were collected every 2–3 months at three different sites along the Thompson and Fraser River corridors in British Columbia, referred to as the Goldpan, White Canyon, and Mile 109 sites. A total of 207 rockfall events occurring across all three sites between November 11, 2014 and October 18, 2016 were recorded in a database. For each of these rockfalls, pre-failure deformation was measured using a method of three-dimensional roto-translation block tracking. Each rockfall was classified by its deformation behaviour and further categorised based on failure mechanism, volume, lithology, and the roughness condition of the failure plane. Results reveal that detectable levels of deformation were measured in 33% of the total number of rockfall events using the present methods. Rotation deformation was most commonly observed in toppling failures with relatively steep joint orientations. Conversely, planar sliding blocks generally exhibited the least measurable deformation, with the majority not showing any precursory translation or rotation. It is postulated that overhanging rockfall configurations may suppress the expression of deformation in rockfall source blocks, though additional research is required to confirm this.  相似文献   

5.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   

6.
Disasters caused by events such as earthquake, flooding, rock falls, landslides are often encountered. However, generally, the reasons for the destructive and devastating effects of these nature events are that settlement locations were chosen without site investigation studies, or that available studies were inadequate. Such inadequacies in the field are related to inappropriate settlement location and the resulting damage caused by rock falls. This study evaluated rockfall risk in a settlement that developed in a similar manner. The study was carried out in Bo?aziçi village of Kemah (Erzincan/Turkey), which is located in a very important tectonic zone. The study site is located on the lower sections of an area with very steep cliffs and 50–75° slopes. This cliff, which is the source of rockfalls, has a slope dip of approximately 90°. The cliff comprises 25–30 m high, fractured and cracked basaltic volcanic mass. To determine block size in the study area, scanline survey measurements and block size measurements were performed on blocks that loosened and fell from the cliff face. It was found that block sizes reached 6 m3. Rockfall analyses were performed along the selected profiles using the Rockfall V.4.0 software. Kinetic energy, bounce height, horizontal location of rock end-points, and velocity of the rocks along each section were evaluated separately for each profile. This data were used to produce distribution maps for each profile and the settlement was evaluated in terms of rockfall risk. The results indicate that the study area was at risk of future rockfalls and that it would be appropriate to relocate one part of the settlement.  相似文献   

7.
Using change detection and semi-automated identification methods, it is possible to extract detailed rockfall information from terrestrial laser scanning data to build a database of events, which can be used in the development of the frequency-magnitude relationship for a slope. In this study, we have applied these methods to the White Canyon, a hazardous slope that presents rockfall hazards to the CN Rail line in British Columbia, to build a database of rockfalls including their locations, volumes, and block shapes. We identified over 1900 rockfall events during a 15-month period, ranging in volume from 0.01 to 45 m3. The frequency of these events changed throughout the year, with the highest periods of activity occurring over the winter months. We investigated how the sampling interval, or duration between scans, can affect how the rockfalls are identified, and therefore the frequency-magnitude relationship for the slope using datasets with fewer scans. We show that as the duration between scans becomes larger, fewer rockfalls are detected, as multiple events that have occurred in the same location cluster together into a single event. The results of this study can be used to assist the railways in planning the appropriate number and duration between future scans, in order to capture frequency-magnitude data for the slope with a desired level of detail.  相似文献   

8.
Rockfalls are a major threat to settlements and transportation routes in many places. Although the general protective effect of forests against rockfalls is currently not questioned, little is known about the ideal properties of a forest stand that provides good protection. Therefore, in this study the question was assessed of how mountainous forests may influence rockfalls of single boulders. An actual rockfall trajectory was measured, recorded, analysed and simulated with a rockfall model. Rockfalls into different forest scenarios were also modelled for the site. Results showed that the actual rockfall event can be well simulated. Furthermore, a completely forested slope reduces velocity and energy of the falling blocks much better than a sparsely forested slope. For the profile discussed in this paper, the largest effect upon falling 3 m3 blocks was obtained with a high forest containing 350 trees per ha. The results confirmed common assumptions on ideal properties of a protective forest stand against rockfalls.  相似文献   

9.
A full-scale landslide-triggering experiment was conducted on a natural sandy slope subjected to an artificial rainfall event, which resulted in mobilisation of 130 m3 of soil mass. Novel slope deformation sensors (SDSs) were applied to monitor the subsurface pre-failure movements and the precursors of the artificially triggered landslide. These fully automated sensors are more flexible than the conventional inclinometers by several orders of magnitude and therefore are able to detect fine movements (<?1 mm) of the soil mass reliably. Data from high-frequency measurements of the external bending work, indicating the transmitted energy from the surrounding soil to these sensors, pore water pressure at various depths, horizontal soil pressure and advanced surface monitoring techniques, contributed to an integrated analysis of the processes that led to triggering of the landslide. Precursors of movements were detected before the failure using the horizontal earth pressure measurements, as well as surface and subsurface movement records. The measurements showed accelerating increases of the horizontal earth pressure in the compression zone of the unstable area and external bending work applied to the slope deformation sensors. These data are compared to the pore water pressure and volumetric water content changes leading to failure.  相似文献   

10.
Summary During the last decade the Bristen mountain road in Switzerland (Canton Uri) has been repeatedly subjected to rockfalls on the stretch between Amsteg and St. Antoni. The last one occurred on the 19th January, 1995, with a total volume of 600 m3. After clearing away the rubble from the road, the authorities initiated a comprehensive rock mechanics investigation. Its aim was to assess by means of clearly defined criteria the stability of the rock slope and to define suitable safety measures against local rockfalls and major slope failure.  相似文献   

11.
危岩是山区常见的地质灾害之一。以往研究缺少对危岩整体破坏导致危岩解体方面的关注,而危岩在失稳崩落过程中的解体行为却是预测危岩影响范围和防治成效的关键所在。为此,文章以郑万(郑州—万州)高铁宜万段沿线隧道洞口边坡危岩为研究对象,从结构面角度出发,对危岩崩落破坏特征进行研究。通过对15个隧道洞口边坡的调查,首先从边坡坡度、岩性组合、相对高差三个方面总结了研究区危岩发育分布规律;然后根据边坡岩体结构特征,分析了危岩失稳模式,并基于边坡上部危岩和下部落石的体积和形状对应关系,进一步探讨了边坡危岩崩落破坏演化过程;在此基础上,利用Rockfall模拟软件对落石运动特征进行预测分析。结果表明:(1)研究区边坡呈上陡下缓地形,上部基岩裸露,坡度基本上≥70°;危岩主要发育于弱风化的灰岩和白云岩中;边坡高差在150~300 m之间。(2)边坡上部危岩将呈阶梯状方式逐渐沿基底结构面滑移或者沿后缘结构面拉裂坠落。(3)研究区危岩崩落破坏模式主要为边坡上部岩体沿结构面解体破坏。(4)大部分隧道洞口边坡落石危险性较大,严重威胁隧道洞口的安全,需要采取相应的防治措施。研究成果可为在建的郑万高铁宜万段隧道边坡危岩的有效防治提供参考。  相似文献   

12.
In 2010, the south flank of Mount Meager failed catastrophically, generating the largest (53 ± 3.8 × 106 m3) landslide in Canadian history. We document the slow deformation of the edifice prior to failure using archival historic aerial photographs spanning the period 1948–2006. All photos were processed using Structure from Motion (SfM) photogrammetry. We used the SfM products to produce pre-and post-failure geomorphic maps that document changes in the volcanic edifice and Capricorn Glacier at its base. The photographic dataset shows that the Capricorn Glacier re-advanced from a retracted position in the 1980s then rapidly retreated in the lead-up to the 2010 failure. The dataset also documents 60 years of progressive development of faults, toe bulging, and precursory failures in 1998 and 2009. The 2010 collapse was conditioned by glacial retreat and triggered by hot summer weather that caused ice and snow to melt. Meltwater increased pore water pressures in colluvium and fractured rocks at the base of the slope, causing those materials to mobilize, which in turn triggered several secondary failures structurally controlled by lithology and faults. The landslide retrogressed from the base of the slope to near the peak of Mount Meager involving basement rock and the overlying volcanic sequence. Elsewhere on the flanks of Mount Meager, large fractures have developed in recently deglaciated areas, conditioning these slopes for future collapse. Potential failures in these areas have larger volumes than the 2010 landslide. Anticipated atmospheric warming over the next several decades will cause further loss of snow and glacier ice, likely producing additional slope instability. Satellite- and ground-based monitoring of these slopes can provide advanced warning of future landslides to help reduce risk in populated regions downstream.  相似文献   

13.
On October 12th, 2007 about 40,000 m3 of dolomitic rock detached from the northern wall of the peak known as “Cima Una” (Val Fiscalina, Sesto Dolomites, Bolzano, Italy), and fell 900 m to Fiscalina Valley below. The event generated a dense dust cloud, which traveled up to 4 km from the source area. The failure surface was formed by two near-vertical surfaces, almost perpendicular to each other. The orientation of these surfaces is consistent with two of the main regional tectonic sets. Only a small portion of the fallen material appeared to be preserved as blocks deposited at the base of the rock wall. About a fifth of the fallen mass was deposited on a colluvial cone. The missing mass, estimated to be about 80 %, may be represented by highly fragmented rock in part deposited as sand on the valley floor and in part dispersed as a dense dust cloud generated during the rockfall. There appears to be a deficit of deposited material, which could lead underestimation in the calculation of rock–cliff recession rates. The dynamics of the rockfall, strongly conditioned by the local topography, partially explains the intense rock breakage and the generation of the dust cloud. The rockfall was not caused by an external trigger, such as an earthquake or heavy rainfall; the failure was most likely progressive due to mechanical and physical degradation along highly stressed failure surfaces, possibly promoted by permafrost degradation and freeze and thaw processes.  相似文献   

14.
The Guantan landslide, with a total displaced mass of about 468 × 104 m3, was triggered by the 2008 Wenchuan earthquake and succeeding rainfall in Jushui Town, Sichuan Province, China. The landslide occurred on an anti-dip hard rock slope with a weak rock founding stratum of 200 m in thickness. To investigate the failure mechanism of the Guantan landslide, dynamic behaviors of hard and soft rock slopes were investigated by means of large scale shaking table tests. The laboratory models attempted to simulate the field geological conditions of the Guantan landslide. Sinusoidal waves and actual seismic waves measured from the Wenchuan Earthquake were applied on the slope models under 37 loading configurations. The experimental results indicated that deformation mainly developed at a shallow depth in the upper part of the hard rock slope and in the upper (near the crest) and lower (near the toe) parts of the soft rock slope. An equation for predicting the depth of sliding plane was proposed based on the location of the maximum horizontal acceleration. Finally, it was concluded that the failure process of the Guantan landslide occurred in three stages: (1) toppling failure caused by compression of the underlying soft rock strata, (2) formation of crushed hard rock and sliding surface in soft rock as the result of seismic shocks, particularly in the horizontal direction, and (3) aftershock rainfall accelerates the process of mass movement along the sliding plane.  相似文献   

15.
To investigate the formation mechanism and the stability of Wanjia middle school slope in Wenchuan Earthquake Area, the macroscopic geological characteristics and the failure process of the landslide are researched by engineering geology analysis method, limit equilibrium method, and finit element method. The results show that after the Wenchuan Earthquake, retaining walls, houses and other infrastructure on the foot of Wanjia middle school slope were severely destroyed, 10 cm wide tension fracture appeared at the trailing edge of the slope. Wanjia middle school slope is a type of medium-sized soil landslide. The area of the deformation body is about 19,314 m2, the total volume of the deformation body is about 23 × 104 m3. There may be two potential sliding surfaces in the unstable slope: shallow and deep landslide. The analysis results of the limit equilibrium method and the finite element method show that: under dead weight, dead weight + rainstorm, dead weight + earthquake conditions, the plastic zone occurs mainly at the middle part or the trailing edge of the slope, and it doesn’t fully cut through the deep landslide body, so the deep landslide is stable. However, under rainstorm or earthquake conditions, the plastic zone almost completely cut thorough the shallow landslide body, it shows that the shallow landslide is in the understable–basic stable state. It is found that the results of finite element method is concordant with the results of the limit equilibrium method (F s = 1.06–1.29, the shallow landslide is in the basic stable–stable state). The calculation results show that shallow landslides are likely to occur in Wanjia middle school slope during a rainstorm or an earthquake, so monitoring and control of the slope should be strengthened. The shallow landslide should be managed by some measures, such as anti slide pile retaining structures and drainage works, and the dangerous rock bodies on the slope surface should be cleaned up.  相似文献   

16.
In this study we show the application of a long-range Terrestrial Laser Scanner (TLS) to a detailed rockfall study in a test zone at Vall de Núria, located in the Eastern Pyrenees. Data acquisition was carried out using TLS-Ilris3D, the new generation of reflector-less laser scanners with a high range, accuracy and velocity of measurements. Eight scans were performed at 3 stations to acquire coordinates of almost 4 million points. The results from the acquired data are a high accuracy Digital Elevation Model (DEM) and the reconstruction of the joint geometry. The former is used for inventory of rockfalls and for more accurate rockfall simulation (trajectories and velocities). The latter allows us to model the geometry and volume of the source area in recent rockfalls. Our findings suggest that TLS technology could be a tool of reference in rockfall studies in the near future.  相似文献   

17.
18.
山西壶关太行山大峡谷景区为中国最美十大峡谷之一,但景区落石灾害频发,严重威胁景区安全运营。本文基于高精度地形信息与岩土体强度特性,采用坡度角分布方法开展区域尺度潜在落石源区识别,并引入岩体破坏敏感性指标定量描述潜在落石源区失稳概率。然后,利用经验模型Flow-R模拟落石运动扩散过程,获取落石的传播概率与能量分布情况。最后,提出落石危险性双因子评价模型实现落石危险性定量评估。获得主要结论如下:(1)研究区内潜在落石源区面积为25.7 km2(35.7%),主要以条带状分布于峡谷两侧陡壁。其中岩体破坏高敏感性区为3.3 km2。(2)研究区落石高危险区面积达3.22 km2,主要威胁景区内游客集散地与交通线路,尤其在S327荫林线红豆峡入口处落石危险性最高。(3)野外调查验证结果表明了应用坡度角分布方法识别潜在落石源区的高效性与准确性,提出的双因子评价模型可为峡谷区落石危险性评估提供快速解决方案。本文提出的“区域落石源区识别-源区失稳概率分析-落石危险性评估”的一整套技术方案能够为类似的高山峡谷区落石灾害早期识别及风险防控提供技术参考。  相似文献   

19.
In this paper, we describe the investigations and actions taken to reduce risk and prevent casualties from a catastrophic 210,000 m3 rockslope failure, which occurred near the village of Preonzo in the Swiss Alps on May 15, 2012. We describe the geological predisposition and displacement history before and during the accelerated creep stage as well as the development and operation of an efficient early warning system. The failure of May 15, 2012, occurred from a large and retrogressive instability in gneisses and amphibolites with a total volume of about 350,000 m3, which formed an alpine meadow 1250 m above the valley floor. About 140,000 m3 of unstable rock mass remained in place and might collapse partially or completely in the future. The instability showed clearly visible signs of movements along a tension crack since 1989 and accelerated creep with significant hydromechanical forcing since about 2006. Because the active rockslide at Preonzo threatened a large industrial facility and important transport routes located directly at the toe of the slope, an early warning system was installed in 2010. The thresholds for prealarm, general public alarm, and evacuation were derived from crack meter and total station monitoring data covering a period of about 10 years, supplemented with information from past failure events with similar predisposition. These thresholds were successfully applied to evacuate the industrial facility and to close important roads a few days before the catastrophic slope failure of May 15, 2012. The rock slope failure occurred in two events, exposing a compound rupture plane dipping 42° and generating deposits in the midslope portion with a travel angle of 39°. Three hours after the second rockslide, the fresh deposits became reactivated in a devastating debris avalanche that reached the foot of the slope but did not destroy any infrastructure. The final run-out distance of this combined rock collapse–debris avalanche corresponded to the predictions made in the year 2004.  相似文献   

20.
This paper describes recent exceptional slope failures in high-mountain, glacial environments: the 2002 Kolka–Karmadon rock–ice avalanche in the Caucasus, a series of ice–rock avalanches on Iliamna Volcano, Alaska, the 2005 Mt. Steller rock–ice avalanche in Alaska, and ice and rock avalanches at Monte Rosa, Italy in 2005 and 2007. Deposit volumes range from 106 to 108 m3 and include rock, ice and snow. Here we focus on thermal aspects of these failures reflecting the involvement of glacier ice and permafrost at all sites, suggesting that thermal perturbations likely contributed to the slope failures. We use surface and troposphere air temperatures, near-surface rock temperatures, satellite thermal data, and recent 2D and 3D thermal modeling studies to document thermal conditions at the landslide sites. We distinguish between thermal perturbations of volcanic-geothermal and climatic origin, and thermal perturbations related to glacier–permafrost interaction. The data and analysis support the view that recent, current and future climatic change increases the likelihood of large slope failures in steep glacierized and permafrost terrain. However, some important aspects of these settings such as the geology and tectonic environment remain poorly understood, making the identification of future sites of large slope instabilities difficult. In view of the potentially large natural disasters that can be caused by such slope failures, improved data and understanding are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号