首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mahu lake, the third deepest lake in China, is located on the west bank of the Jinsha River in Leibo county, Sichuan Province. It is a dammed lake created by an old landslide on the ancient Huanglang river, a tributary on the west bank of the Jinsha River. Previous studies (Wang and Lu in J Mt Res S1:44–47, 2000) suggested that this landslide was caused by an earthquake approximately 372 ka (Middle Pleistocene), during which a few hundreds of million cubic meters of debris were deposited between 1177 and 900 m a.s.l. (above sea level), covering an area of around 15 km2. Our further investigations, including geodetic survey, borehole drilling, and field reconnaissance, combining with five chronological data, have made some new discoveries at this site. First, the toe of the landslide extends from 900 m a.s.l. down to 320 m a.s.l., i.e., the local bed elevation of the contemporary Jinsha River. Second, the area of the landslide deposits is 17.3 km2 with a volume of 2.38 km3, much larger than the previous estimation. Thus, it should be one of the largest known landslides in China. And the lower elevation of the landslide’s toe also rules out the possibility that it is a hanging valley on the ancient Huanglang river. Our work suggests that this landslide was created by five events according to the overlapping characteristics of the deposits and five chronological data, which are old than 52,600 years, old than 16,000 years, old than 15,500 years, 5800 years, and old than 4200 years, respectively.  相似文献   

2.
This case study paper is about a large rotational rock and earth slide—earth flow located in the Secchia River Valley, in the Northern Apennines of Italy, that has displayed multiple reactivation phases between 2002 and 2004. The main geological constraints of the mass movement are related to the overlap of flysch rock masses over clayey complexes that allows rock slides to take place in the source area. The disarrangement and weathering of rock masses following slope movements causes large amount of fine-grained debris to be accumulated on the slope and mobilised by earth sliding and flowing. Analysis of rainfall data at the onset of reactivation events has proved that they occurred after periods with cumulated values higher than the averages of the last 30 years. The quantification of the morphological modifications induced by these reactivations has been made possible by comparing pre- and post-event digital elevation models. Depletion and accumulation has been in the range of 30 m in different parts of the slope. In particular, an advancement of the landslide toe of more than 400 m, which caused a 30-m thick landslide tip to deposit, has been clearly seen. Monitoring data regarding subsurface movements and surface tension crack widening (tension cracks so large as to be properly described at trenches) has shown that sliding surfaces as deep as 43 m exist in the upper part of the landslide, while the accumulation lobe has moved by sliding and flowing over surfaces as deep as some 10 m. Velocities of cm/day have been recorded in the deep surfaces and in widening trenches of the source area, while the advancement of the accumulation lobe has been estimated as having velocities of up to 10 m/day. Groundwater in the landslide body has been observed at depths of 5–15 m in the upper areas, while it is estimated as being at the ground level in the toe. On this basis, it is concluded that the landslide still has a high potential for further development, both in the upper landslide zone and in the toe area.  相似文献   

3.
This study analyzes the mechanism of the landslide event at Hsiaolin Village during Typhoon Morakot in 2009. This landslide event resulted in 400 deaths. The extremely high intensity and accumulative rainfall events may cause large-scale and complex landslide disasters. To study and understand a landslide event, a combination of field investigations and numerical models is used. The landslide area is determined by comparing topographic information from before and after the event. Physiographic parameters are determined from field investigations. These parameters are applied to a numerical model to simulate the landslide process. Due to the high intensity of the rainfall event, 1,675 mm during the 80 h before the landslide event, the water content of soil was rapidly increased causing a landslide to occur. According to the survivors, the total duration of the landslide run out was less than 3 min. Simulation results indicated that the total duration was about 150 s. After the landslide occurrence, the landslide mass separated into two parts by a spur at EL 590 in about 30 to 50 s. One part passed the spur in about 30 to 60 s. One part inundated the Hsiaolin Village and the other deposited at a local river channel and formed a landslide dam. The landslide dam had height between 50 and 60 m and length between 800 and 900 m. The simulation result shows that the proposed model can be used to evaluate the potential areas of landslides induced by extremely high intensity rainfall events.  相似文献   

4.
To investigate the formation mechanism and the stability of Wanjia middle school slope in Wenchuan Earthquake Area, the macroscopic geological characteristics and the failure process of the landslide are researched by engineering geology analysis method, limit equilibrium method, and finit element method. The results show that after the Wenchuan Earthquake, retaining walls, houses and other infrastructure on the foot of Wanjia middle school slope were severely destroyed, 10 cm wide tension fracture appeared at the trailing edge of the slope. Wanjia middle school slope is a type of medium-sized soil landslide. The area of the deformation body is about 19,314 m2, the total volume of the deformation body is about 23 × 104 m3. There may be two potential sliding surfaces in the unstable slope: shallow and deep landslide. The analysis results of the limit equilibrium method and the finite element method show that: under dead weight, dead weight + rainstorm, dead weight + earthquake conditions, the plastic zone occurs mainly at the middle part or the trailing edge of the slope, and it doesn’t fully cut through the deep landslide body, so the deep landslide is stable. However, under rainstorm or earthquake conditions, the plastic zone almost completely cut thorough the shallow landslide body, it shows that the shallow landslide is in the understable–basic stable state. It is found that the results of finite element method is concordant with the results of the limit equilibrium method (F s = 1.06–1.29, the shallow landslide is in the basic stable–stable state). The calculation results show that shallow landslides are likely to occur in Wanjia middle school slope during a rainstorm or an earthquake, so monitoring and control of the slope should be strengthened. The shallow landslide should be managed by some measures, such as anti slide pile retaining structures and drainage works, and the dangerous rock bodies on the slope surface should be cleaned up.  相似文献   

5.
穆文平  王康  钱程  邢渊  王卓然  朱阁  武雄 《岩土力学》2016,37(3):802-812
青海上湾特大型老滑坡体是一个典型的多期次第四系上更新统黄土与新近系贵德群泥岩切层旋转滑坡,滑动面主要位于新近系贵德群泥岩内。在充分利用现场滑坡勘查和钻探试验所获取资料的基础上,通过对滑坡堆积物中的关键层(黄土状土和砾岩堆积物)与泥岩堆积物的空间位置组合关系的研究,以及对老滑坡体底滑面的形态和黄土状土顶部的淤泥(堰塞湖湖积物)的分析,确定了上湾特大型老滑坡体主要经历了两次规模较大的滑动。利用地下水动力学的理论,计算出两次滑动前的地下水位,并建立了分析滑坡变形与破坏机制的数值模型。综合区域新构造运动特点、地下水位的动态变化、新近系贵德群泥岩在饱水状态下力学强度显著下降的特征以及FLAC3D数值模拟结果,得出老滑坡体第1次滑动主要是由于河流下切作用引起,并给出了河流下切过程中坡体变形的3个阶段。第2次滑动是由于第1次滑动后,斜坡临空面变陡,坡脚剪应力进一步集中,且在其前缘形成一个堰塞湖,导致地下水位上升软化泥岩而发生的累进性牵引滑动。  相似文献   

6.
Tsaoling is located in Southwestern Taiwan, 10 km east of the frontal thrusts of the mountain belt. Five large historical landslide events were recorded from 1862 to 1999. No details of the earliest landslide event (1862) are available, thus this paper deals with the 1941 landslide event. Using the Particle Flow Code in two dimensions (PFC 2D) to simulate the mechanism of the Tsaoling landslide in 1941, this study shows that the landslide block developed cracks and slid down 0.2–1.8 m on the sliding plane. The cracks concentrated in certain zones, which corresponded to future landslide detachment planes. During the vibration simulation, the cracks spread from the shear plane to ground surface. Monitoring the variations of the displacements, velocity, and stress during vibration simulation showed that the peak velocity and stress in the transition zones occurred at 3 s. The displacement of the left part of the block exceeded 1.3 m, and the displacement of the right part was less than 1.3 m during vibration simulation. These results suggest that the left part of the block was pushed down by the right part, ultimately inducing a landslide during an earthquake.  相似文献   

7.
The Guantan landslide, with a total displaced mass of about 468 × 104 m3, was triggered by the 2008 Wenchuan earthquake and succeeding rainfall in Jushui Town, Sichuan Province, China. The landslide occurred on an anti-dip hard rock slope with a weak rock founding stratum of 200 m in thickness. To investigate the failure mechanism of the Guantan landslide, dynamic behaviors of hard and soft rock slopes were investigated by means of large scale shaking table tests. The laboratory models attempted to simulate the field geological conditions of the Guantan landslide. Sinusoidal waves and actual seismic waves measured from the Wenchuan Earthquake were applied on the slope models under 37 loading configurations. The experimental results indicated that deformation mainly developed at a shallow depth in the upper part of the hard rock slope and in the upper (near the crest) and lower (near the toe) parts of the soft rock slope. An equation for predicting the depth of sliding plane was proposed based on the location of the maximum horizontal acceleration. Finally, it was concluded that the failure process of the Guantan landslide occurred in three stages: (1) toppling failure caused by compression of the underlying soft rock strata, (2) formation of crushed hard rock and sliding surface in soft rock as the result of seismic shocks, particularly in the horizontal direction, and (3) aftershock rainfall accelerates the process of mass movement along the sliding plane.  相似文献   

8.
皖南山区典型顺层滑坡形成机制研究   总被引:1,自引:0,他引:1  
皖南山区鸟雀坪滑坡是典型的顺层岩质滑坡,其变形破坏模式为滑移-弯曲,变形破坏过程可分为以下三个阶段:斜坡初始形成,表面卸荷回弹阶段、上部岩体滑移,下部岩体隆起弯曲阶段、滑面贯通—滑坡整体失稳破坏阶段。滑坡形成沿河长200m,纵向长700m,体积约200×104m3的滑坡堆积体,堵塞大源河并强迫河流发生改道。  相似文献   

9.
万州安乐寺滑坡前缘松散堆积体成因与防治对策   总被引:5,自引:0,他引:5  
逐一分析了安乐寺滑坡前缘西溪铺、农机技校松散堆积体的144个勘探钻孔,根据土体物质成分进行分层并对其成因进行判断;对相邻钻孔的土层进行比较,将相同的土层连接起来,绘制工程地质剖面图;将工程地质剖面图进行综合对比分析,探讨每一土层的连续性、延伸性.按照“钻孔-剖面-成层”的研究方法,对安乐寺滑坡前缘松散堆积体的特征及成因进行详细的研究.研究结果表明:安乐寺滑坡前缘松散堆积体是以安乐寺滑坡前部的滑动解体作用为主,包括残积、坡积、冲积等共同作用形成的.前缘松散堆积体中存在多个滑动面,滑动面平直、光滑,可以分为2种类型:一类是中深层滑动面,数量较少,规模大;另一类是浅层滑动面,数量较多,规模小.滑动面的这种分布规律反映了前缘松散堆积体是一个长期的不连续的变形体.最后,考虑松散堆积体下伏卵石砂土层地质结构,对松散堆积体防治措施进行了探讨,认为安乐寺前缘松散堆积体采用抗滑桩支挡结合地表排水与护坡等措施进行治理是适宜的,但抗滑桩嵌固段必须深入到卵石砂土层以下稳定的基岩中,以避免抗滑桩随卵石砂土层产生整体位移.  相似文献   

10.
The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau, where active faults are well developed and earthquakes frequently occur. Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards. Based on the analysis of remote sensing interpretations, geological field surveys, geophysical prospecting and geological dating results, this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County, Sichuan Province, and investigates its geological age and formation mechanism. This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP. The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km, with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area. The landslide movement was characterized by a high speed and long runout. During the sliding process, the landslide body eroded and dammed the ancient Minjiang River valley. The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area. Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick. After the dam broke, the Minjiang River was migrated to the current channel at the leading edge of the landslide. The Gamisi ancient landslide was greatly affected by the regional crustal uplift, topography, geomorphology and paleoclimatic change. The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured, thus providing a lithological foundation for landslide occurrence. Intense tectonic activity along the Minjiang Fault, which runs through the middle and trailing parts of the Gamisi ancient landslide, may have been the main factor inducing landsliding. Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation.  相似文献   

11.
Subaerial landslides falling into confined water bodies often generate impulsive waves. Damaging landslide tsunamis in Three Gorges Reservoir, China, have struck several times in the last 15 years. On June 24, 2015, a 23?×?104 m3 slope failure occurred on the east bank of the Daning River opposite Wushan Town. The sliding mass intruded into the Three Gorges Reservoir and initiated a reservoir tsunami that resulted in two deaths and significant damage to shipping facilities. A post-event survey revealed the landslide geometry and wave run-up distribution, while an eyewitness video captured most of the landslide motion. Employing these firm constraints, we applied the Tsunami Squares method to simulate the 2015 Hongyanzi landslide and tsunami. The simulation revealed that the landslide experienced a progressive failure in the first few seconds and impacted the water with a maximum velocity of ~?16 m/s. The initial wave propagated to the opposite shore in an arch shape, and the water surface reached a maximum amplitude of ~?11 m near the landslide. Wave amplitude-time curves at four points on the river cross section show that the initial wave reached Wushan town in about 50 s with an average wave velocity of ~?30 m/s. The maximum wave run-ups on the shoreline opposite the landslide are around 6 m and attenuate to less than 1 m beyond 2-km distance. The landslide simulation matches the observed geological profile and the eyewitness video, and the numerical results coincide with the observed wave run-up heights. Nearly 80% of landslide energy is lost due to frictional resistances, but the remaining fraction imparted to the tsunami carried catastrophic consequences to a large region. The numerical results emphasize the efficiency and accuracy of Tsunami Squares method for a “Quick Look” simulation of a potential landslide.  相似文献   

12.
The evolution of large-scale landslides should be studied because, over long periods of time, primary remediation measures may suffer reduced efficiency or have to be adjusted many times. The 102 Landslide in southeast Tibet, which originally formed in 1991 with a volume of 5.1 million m3 and still exhibits post-failure activity, provides a distinctive case study. The landslide evolved from earthquake destruction and unloading, rainfall-triggered sliding, and debris flow to sands sliding slopes. The NE ringed scarp receded by 38.96 m during a five-year period (2003–2008). The total recession was 160 m with a total area of 2500 m2 during a 17-year period (1991–2008). Although several types of remediation measures were applied and were temporarily effective, the normal function of the Sichuan–Tibet Highway was affected by landslide reactivation from time to time. Actual effects of the engineering measures such as retaining walls, prestressed anchor cables, and drainage ditches confirm that hasty governance of this type of large-scale landslide is generally unfeasible over long time periods. Finally, an approach involving a tunnel running backward from the front face has been adopted as a permanent solution to large-scale moraine slope failures: This engineering practice has been in progress since April 2012. This paper describes the evolution of the 102 Landslide, the engineering interventions to mitigate the effects of the landslide on the Sichuan–Tibet Highway, and the choice of tunneling as a final mitigation measure. The present study concludes that approaches that allow escape from developing geo-hazards should always be the initial choice.  相似文献   

13.
A 12 million of m3 translational rockslide developed on a dip slope underlain by limestone with interlayered marls, and responsible for the destruction of the Montclús village in the fourteenth century, has been investigated by means of geomorphological and geophysical surveys. The combination of historical-geoarcheological, geomorphological, seismic refraction and electrical resistivity imaging datasets allowed the (1) reconstruction of the late Quaternary episodic evolution of the landslide, (2) characterization of the geometry and internal structure of the slid mass and (3) identification of preferential groundwater flow paths that favoured slope instability. The development of the landslide involved at least two different displacement episodes controlled by sliding surfaces at successively deeper stratigraphic positions. The first landsliding event, recorded by highly weathered landslide deposits situated above a perched failure plane, occurred approximately during the global Last Glacial Maximum (23–19 ka BP). The most recent event, which destroyed the Montclús village built on already slid rocks, is placed in the fourteenth century. Most probably, this reactivation event was triggered by the 1373 Ribagorza earthquake, with an estimated moment magnitude of M w 6.2. This work illustrates the benefits of combining geomorphological data with complementary geophysical technics in landslide investigation.  相似文献   

14.
On 11 January 2013, a catastrophic landslide of ~0.2 million m3 due to a prolonged low-intensity rainfall occurred in Zhenxiong, Yunnan, southwestern China. This landslide destroyed the village of Zhaojiagou and killed 46 people in the distal part of its path. The displaced landslide material traveled a horizontal distance of ~800 m with a vertical drop of ~280 m and stopped at 1520 m a.s.l. To examine the possible mechanism and behavior of the landslide from initiation to runout, the shear behavior of soil samples collected from the sliding surface and runout path was examined by means of ring shear tests. The test results show that the shear strength of sample from the sliding surface is less affected by shear rate while the shear rate has a negative effect on the shear strength of runout path material. It is suggested that the source and runout path materials follow the frictional and Voellmy rheology, respectively. Post-failure behavior of the landslide was modeled by using a DAN-W model, and the numerical results show that the selected rheological relationships and parameters based on the results of ring shear tests may provide good performance in modeling the Zhenxiong landslide.  相似文献   

15.
A rock avalanche is a geological event that is always sudden, rapid and with a long run-out, and can result in large loss of lives and property. The Wenjiagou rock avalanche was a high-speed rock landslide caused by a strong earthquake, in Mianzhu, Sichuan Province, southwest China. In this study, we reproduce the movement and deposition processes of the sliding mass by numerical simulation. We analyze the effects of the friction coefficient of each slip surface and the strength of the parallel bonds and contact stiffness between particles on the dynamic process and deposit features using three-dimensional particle flow code (PFC3D). The simulation results agree with the field measurements when the friction coefficient is 0.2, parallel bond strength is 2 MPa, and contact stiffness is 2?×?108 kN/m. The landslide lasted about 115 s from the initial movement to the final deposition at the exit of the valley. The maximum velocity of the sliding mass was 114 m/s.  相似文献   

16.
On June 24, 2015, Hongyanzi slope located in Wushan County of the Three Gorges Reservoir collapsed, generating 5–6-m-high impulse waves, which overturned 13 boats, killed 2 persons, and injured 4 persons. It is the second incident of landslide-generated impulse waves since the 175-m experimental impoundment in 2008. The emergency investigation shows that Hongyanzi landslide is a bedding soil landslide with a volume of 23?×?104 m3 induced by a series of triggering factors such as rainfall, flooding upstream, and reservoir drawdown. The nonlinear Boussinesq water wave model is used to reproduce the impulse waves generated by the landslide of June 24th. The numerical simulation results suggest that the wave propagation process was influenced by the T-shaped geomorphic conditions of river valley, and the coastal areas in the county seat were the major wave-affected areas, which is opposite to the landslide. The numerical wave process accord well with the observed incident, and the investigation values were in good agreement with the calculated values. Moreover, the worst-case scenario of the 7?×?104 m3 deformation mass beside Hongyanzi landslide is potential to generate impulse waves, which was predicted with the same numerical model. This adjacent deformation mass will probably generate impulse waves with maximum height and run-up of 2.2 and 2.0 m, respectively, and only a very few areas in the water course had waves rising to a height of 1 m or above. The research results provide a technical basis for emergency disposal to Hongyanzi landslide and navigation restriction in Wushan waterway. More importantly, it pushes the risk management of the navigation based on the impulse wave generated by landslide. It is advised that the Three Gorges Reservoir and other reservoirs around the world should put more efforts in performing special surveys and studies on the potential hazards associated with landslide-generated impulse waves.  相似文献   

17.
滑坡是影响路桥安全的重要隐伏地质灾害。地球物理方法作为一种无损高效的勘察方法,可有效查明滑坡体内部的地质构造及滑面等特征。本文以张榆线崇礼隧道出口段滑坡为例,采用高密度电阻率法和剪切波速测试,并结合钻孔资料对滑坡体的地球物理特征进行了分析。该滑坡体视电阻率值和剪切波速值具有明显的垂向差异性,一定程度反映了该滑坡体岩土体性质、密实度、含水率的垂向差异性,综合分析认为视电阻率值和剪切波速值较高的强风化流纹岩顶面为潜在滑面。在此基础之上,基本确定了滑坡体由冲洪积体和坡积物组成,附着于流纹岩体之上,横向长度达300 m,纵向长度260 m,滑坡体厚度达20~30 m。同时,根据高密度电阻率三维剖面分析,认为滑坡体底部滑趾处为剪出口位置。最后,基于滑坡体地球物理特征建立了滑坡体地质模型。  相似文献   

18.
In recent years, earthquake-triggered landslides have attracted much attention in the scientific community as a main form of seismic ground response. However, little work has been performed concerning the volume and gravitational potential energy reduction of earthquake-triggered landslides and their severe effect on landscape change. This paper presents a quantitative study on the volume, gravitational potential energy reduction, and change in landscape related to landslides triggered by the 14 April 2010 Yushu earthquake. At least 2,036 landslides were triggered by the earthquake. A total landslide scar area of 1.194 km2 was delineated from the visual interpretation of aerial photographs and satellite images and was supported by selected field checking. In this paper, we focus on possible answers to the following five questions: (1) What is the total volume of the 2,036 landslides triggered by the earthquake, and what is the average landslide erosion thickness in the earthquake-stricken area? (2) What are the elevations of all landslide materials in relation to pre- and post-landsliding? (3) How much was the gravitational potential energy reduced due to the sliding of these landslide materials? (4) What is the average elevation change caused by these landslides in the study area? (5) What is the vertical change of the regional centroid position above sea level, as induced by these landslides? It is concluded that the total volume of the 2,036 landslides is 2.9399?×?106 m3. The landslide erosion thickness throughout the study area is 2.02 mm. The materials of these landslides moved from an elevation of 4,145.243 to 4,104.697 m, resulting in a decreased distance of 40.546 m. The gravitational potential energy reduction related to the landslides triggered by the earthquake was 2.9213?×?1012 J. The average regional elevation of the study area is 4,427.160 m, a value consistent with the assumption that the accumulated materials were remained in situ. This value changes from 4,427.160 to 4,427.158 m with all landslide materials moved out of the study area, resulting in a reduction in elevation of 2 mm. Based on the assumption that all landslide materials moved out of the study area, the elevations of the centroid of the study area’s crust changed from 2,222.45967 to 2,222.45867 m, which means the centroid value decreased by 1 mm. This value is 0.001 mm when assuming that the materials were remained in situ, which is almost negligible, compared with the situation of “all landslide materials moved out of the study area.”  相似文献   

19.
持续的引水灌溉导致陕西泾阳南塬黄土滑坡频繁发生,2015年5月26日庙店村附近发生一起黄土滑坡,冲毁农田数亩。本文以"5·26"滑坡作为典型的案例,通过详细的野外调查、测量、勘探等工作,分析了其诱发因素、运动过程、堆积特征。结果表明:(1)滑坡滑动距离278 m,后壁宽222 m,滑后后壁高差40 m,主滑方向45°;(2)滑坡呈现滑动多级次特点,前后滑动4次,滑体堆积面积约为6.2×104 m2,堆积体总体积约50×104 m3,堆积体平均堆积厚度约10 m;(3)滑坡的主要激发因子为持续灌溉,但是地表显式裂缝和土体深部裂隙在地表径流优势入渗中发挥了重要作用,导致地下水位持续抬升。而且滑坡区的节理控制了滑坡的后壁宽度和滑动方向。最后基于泾阳南塬滑坡发生的频率和降雨有着一定关联性,探讨了降雨对本次滑坡事件的影响和滑坡再次发生的可能性。  相似文献   

20.
During the 2004 Mid-Niigata Prefecture earthquake, thousands of landslides were triggered, among them two large-scale rapid landslides (Higashi Takezawa and Terano landslides) occurred within past landslide masses and dammed the river at the toe of the landslides, posing great risks for the society. Detailed field investigation was performed on these two landslides. To examine the triggering and movement mechanisms, samples were taken from these two landslides. By using a ring shear apparatus, real earthquake wave loading test and cyclic loading tests were performed on these samples. The test results revealed that those sand samples from both landslides can suffer from sliding surface liquefaction phenomenon with very low final apparent friction angles, while the silt sample from Terano landslide showed no liquefaction failure, indicating that the sliding surfaces of these rapid landslides must have been formed within the sand layer in the past landslide masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号