首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
沙丘背风侧气流及其沉积类型与意义   总被引:6,自引:2,他引:6  
哈斯  王贵勇  董光荣 《沉积学报》2001,19(1):96-100,124
在腾格里沙漠东南缘对现代沙丘表面气流、沉积过程的野外观测结果表明,由于区域气流、沙丘形态及其相互作用等的不同使沙丘背风坡气流发生变化,在此发现三种背风坡次生气流 :分离流、附体未偏向流和附体偏向流。前者以弱的反向流为特征多发生在横向气流条件下坡度较陡的背风坡;后二者具有相对高的风速,其中附体流多发生在坡度缓和的背风坡,其方向在横向气流条件下保持原来的方向,而在斜向气流作用下发生偏转且其强度为原始风入射角的余弦函数。根据背风坡气流方向及强度,作者阐述了不同区域气流环境中沙丘背风坡沉积过程、层理类型及特征,探讨了交错层产状与区域气流方向之间的关系.  相似文献   

2.
Aeolian dune motion is thought to be driven by an annual cycle of sediment‐transporting wind events. Each wind event drives uneven motion of dune crestlines, yet dune crestlines align as a trend to an annual cycle of wind. Understanding the variability in dune motion over such a cycle aids the interpretation of aeolian cross‐stratification, often available only in the limiting exposure of core and outcrop. Digital elevation models obtained by light detection and ranging are used to estimate dune brink motion and sediment flux along the sinuous crestlines of crescentic dunes at White Sands gypsum dune field (south‐central New Mexico, USA) over an annual cycle of wind. In tandem, meteorological observations over the same annual cycle are used to drive a kinematic model of dune crestline motion. Wind‐driven kinematic modelling does well to predict the mean and overall variation in sediment flux with compass direction. Digital elevation model‐based estimations of brink motion and sediment flux reveal that dune motion and sediment flux very nearly follow a circular normal distribution. Dunes at White Sands were found to achieve steady mean values of lee surface dip direction, brink motion and sediment flux within a sample window the size of approximately six dunes of average crestline length. Due to the symmetrical distribution of dune motion about the average lee surface dip direction, uneven motion of dune crestlines averages to become motion of dune crestlines normal to a trend, as predicted by wind‐driven kinematic models.  相似文献   

3.
The dynamic characteristics and migration of a pyramid dune   总被引:6,自引:0,他引:6  
The results of wind tunnel experiments and field observations show that when the intersection angle between airflow direction and dune crest (ridge) line is > 30°, a reverse vortex is formed. Because of the convergence of sand streams from the windward and lee slopes at the crest, sand accumulates in the crestal region, causing vertical growth. Nevertheless, studies also show that the common asymmetry of the two slopes of a dune may significantly influence the evolution of arms of a pyramid dune. The migration rates of pyramid dunes are mediated by the interplay of their arms moving transversely and the vertical growth in response to the variations in wind regimes. Comparing the effects of airflow transverse to a given arm with longitudinal airflow, it is indicated that the transverse airflow is more significant in controlling the arms of pyramid dunes. The whole body of the studied pyramid dune, particularly the upper quarter section, migrated SE direction during the monitoring period. The patterns of wind erosion and deposition change alternately with seasonal variations in wind directions. The W, NE and SE sides undergo constant erosion, deposition and both erosion and deposition, respectively. The results of long-term monitoring of a pyramid dune show that southerly winds, resulting from a local circulation, markedly affect the transverse migration of the whole pyramid dune.  相似文献   

4.
N. LANCASTER 《Sedimentology》1985,32(4):581-593
The magnitudes of increases in wind velocity, or speed-up factors, have been measured on the windward flanks of transverse and linear dunes of varying height. On transverse dunes, velocity speed-up varied with dune shape and height. For linear dunes, speed-up factors varied principally with wind direction relative to the dune, with dune shape and dune height. The main effect of velocity speed-up on the windward flanks of dunes is to increase potential sand transport rates considerably in crestal areas. This is greatest for large dunes, with winds of moderate velocity blowing at a large angle to the dune. Changing ratios of base to crest sand-transport rates on transverse dunes tend to reduce dune steepness as overall wind velocities increase. On linear dunes, the tendency for crestal lowering is counteracted by deposition in this area when winds reverse in a bi-directional wind regime.  相似文献   

5.
The large and extensive transverse and barchane dunes of coastal South West Africa are strongly oriented under the influence of predominantly southerly winds. During periods of strong winds (40–50 miles/h) deposition occurs on the lee slope in three ways: (1) sand is blown over the crest of the dune and falls on the lee slope; (2) rapid deposition near the dune crest results in periodic slumps and slides down the lee slope; (3) eddy currents developed to the lee of the dune pick up sand from the surface downwind from the dune and transport it to the lee slope. The size and strength of the lee eddy is surprising. With winds in the 40–50 miles/h range frequent gusts lift fine sand from the downwind surface to a height of several feet. Less frequently sand is picked up from a low position on the lee slope and redeposited higher on the slope. The addition of material to the lee slope by the eddy is much less volumetrically than the contribution directly over the dune crest from the windward direction; however, with strong winds the removal and transportation of sand from the area downwind of the lee slope back to the lee slope appears to be important in the deflation of this surface. The width of the area influenced by the lee eddy during strong winds is about equal to the height of the dune. Observations in low dunes from 1 to 20 ft. high at Sapelo Island, Ga., U.S.A., confirm the presence of a well developed eddy to the lee of these dunes during strong and moderate winds (20–50 miles/h).  相似文献   

6.
The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote‐sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age‐bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short‐lived aeolian constructional events since ~25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ~12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ~7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform‐normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests.  相似文献   

7.
Dynamic processes acting on a longitudinal (seif) sand dune   总被引:4,自引:0,他引:4  
HAIM TSOAR 《Sedimentology》1983,30(4):567-578
ABSTRACT Field measurements were made on a longitudinal dune in the Sinai Desert in order to understand its morphology and dynamics. The field measurements contradicted the wind structure indicated by the helicoidal flow theory. Rather, it was found that winds coming from two basically different directions at different times and striking the dune obliquely were responsible for sand transport and erosion or deposition along the lee flank.
The essence of this mechanism is the deflection of the wind airflow on the lee flank of the dune to a direction parallel to the crest line. The occurrence of erosion or deposition depends upon the angle of incidence between the wind and the crest line. When this angle is < 40° the velocity of the deflected wind is higher than on the crest line or the windward flank and longitudinal sand transport occurs. When the angle is less acute (> 40°) the velocity of the deflected wind drops and deposition takes place on the lee flank.
The angle of incidence in each wind storm is changed intermittently between 30° and 100° along the dune because the dune meanders and because of the sinuous outline of the crest line. In this manner sand transport and erosion or deposition occurs along the lee flank depending on the angle of incidence between the wind and the crest line. As a result of the deflection of the wind the dune elongates at an average rate of more than 1 m per month. Peaks and saddles along the crest line advance at an average rate of 0.7 m per month.
The lack of uniformity in the effects of the wind on both sides of the dune creates a lack of uniformity in the rate of erosion and deposition. This can explain the formation of peaks along the crest line of the dune.  相似文献   

8.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

9.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

10.
Star dunes have received less study than other major dune types, though they are widely recognized to represent a major dune type that develops under a multi-directional wind regime. Several types that include simple, compound, and complex star dunes are identified in the south of China’s Kumtagh Desert. It is suggested that the formation and development of these star dunes is controlled by wind regime, the underlying and surrounding topography, and sediment availability. A complex wind regime and rich sediment availability are generally required for the development of star dunes. Especially, wind regime appears to be the most important control factor. The wind regime under which star dunes arise is characterized by the drift potential, amount of variability in drift direction, and the direction distribution mode of the drift potential. It is strongly suggested that a rectangular bimodal wind direction distribution mode has unique significance in star dune formation. Under this mode, star dunes can develop in areas with a directional variability index typical of linear dunes or even barchan dunes. A development model is proposed for star dunes based on the following evolution: barchan dunes → transverse ridges → dune networks → simple star dunes → compound star dunes → star dunes atop complex linear dunes.  相似文献   

11.
库布齐沙漠南缘抛物线形沙丘表面粒度特征   总被引:5,自引:0,他引:5  
对库布齐沙漠南缘抛物线形沙丘特征断面上下层(0~5cm、5~10cm)沉积物采样分析结果表明,沙丘粒径与分选参数及其分布随沙丘形态、发育程度和植被生长状况发生变化。抛物线形沙丘丘体迎风坡下凹背风坡上凸,丘顶始终处于侵蚀亚环境。在顺风向断面,平均粒径从迎风坡脚到丘顶变粗,从丘顶到背风坡脚又变细,且这种变化在高大沙丘上更为明显;分选性在迎风坡为中等和较好,丘顶较差,顺风向到背风坡脚逐渐由中等变为较好;粒径频率曲线在丘顶双峰正偏,除迎风坡脚单峰正偏外,其余部位均单峰近对称。在垂直于风向的两翼断面,平均粒径在成熟沙丘由翼顶向两侧坡脚趋于变细,而在欠成熟沙丘无明显的变化趋势。翼间平地沉积物受植被等影响,平均粒径偏细但分选性差,偏度为正偏和极正偏,峰度为尖锐和非常尖锐。受不同时期风况的影响,成熟抛物线形沙丘上下层粒度参数在沙丘断面的分布较欠成熟沙丘一致。  相似文献   

12.
N. LANCASTER 《Sedimentology》1992,39(4):631-644
Multiple generations or genetic units of dunes characterized by different morphologies, sand grain size and sorting, and degree of post-depositional alteration of sediments occur in the Gran Desierto sand sea of Mexico. Dune generations are separated by super bounding surfaces. Episodic accumulation of dunes is a result of a complex response of different sediment sources to regional climatic and eustatic changes. Based on examples from three parts of the sand sea, relations between different generations of dunes suggest that there are two end-member modes of sand sea accumulation: (1) stacking or superposition of dune generations, and (2) accumulating mosaics of dunes of different morphological units. The mode of accumulation is determined by sand supply and accumulation rate: stacking occurs where sand supply is high and/or the sand sea area is restricted by topography; accumulation of mosaics is the preferred mode of accumulation where sand supply is low.  相似文献   

13.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

14.
The type, scale, and relative abundance of sedimentary structures in four kinds of dunes at White Sands National Monument, New Mexico, were determined by examination of vertical sections on walls of trenches cut through the dunes both in a windward direction and at right angles to this direction. Analysis of cross-stratification in all dunes examined indicated certain common features: sets of cross-strata mostly are medium- to large-scale; nearly all laminae dip downwind at high angles (not uncommonly at 30°-34°); most bounding surfaces between sets of cross-strata are nearly horizontal on the upwind side, but have progressively steeper dips to lee, downwind; and individual sets of cross-strata tend to be thinner and the laminae flatter near the top than at the bottom of a dune in vertical section. Sparse but distinctive structural features that are characteristic of the four types of dunes are varieties of contorted bedding, rare ripple laminae, and either local scour-and-fill bedding, or festoon bedding. Other structures, apparently limited to either one or two types of dunes, are the concave-downward foresets in some parabolic dunes; the low-angle reverse dips of upwind strata on high transverse dunes; and the almost horizontal laminae which represent apparent dip in sections normal to wind direction in dome-shaped and transverse dunes. Describing cross-stratification in terms of three dimensions, dune structure at White Sands consists dominantly of the tabular planar sets, with units thickest near the dune base, thinner above. To a lesser extent the sets are of simple (non-erosion) tabular form and relatively uncommonly, of the trough type. Wedge planar forms are scarce. The planar forms characteristically are of two classes in nearly equal proportions: those in which bounding surfaces are virtually horizontal and those in which they dip at moderate to high degree. A brief comparison is made between the structures of dunes that are characteristic of one effective wind direction, as at White Sands, and certain others formed by winds of two or more directions. Seif dunes of Libya, reversing dunes of the San Luis Valley, Colorado, and star dunes in Saudi Arabia are discussed as examples of complex dunes formed by multi-directional winds.  相似文献   

15.
Sand was marked by fluorescent dye in order to trace sand movement and deposition on a longitudinal (seif) sand dune in the Sinai desert. The wind regime was monitored simultaneously. Tracing the dyed sand was possible after light to moderate sand storms and was graphically represented on maps.The dune was subjected to a seasonally bidirectional wind regime, with the wind hitting the dune obliquely on either side. On the windward flank the sand was transported parallel to the wind direction. On the lee flank sand movement was deflected towards parallelism with the crest line. Sand movement was deflected if the dune had a sharp profile which favored separation of wind flow on the lee flank. The deflection depended on the angle of incidence between the wind and the crest line: when the angle of incidence was < 40°, sand on the lee flank was transported parallel to the crest line; when the angle of incidence was nearly perpendicular to the crest, movement along the lee flank abated and deposition occurred. Where the dune was low, flat and blunt, as in a zibar dune, there was no boundary-layer separation and no deflection of sand movement on the lee flank. The deflected movement along the lee flank resulted in elongation of the longitudinal (seif) dune.  相似文献   

16.
A new theoretical scheme is presented to model the shape of a sand dune at equilibrium that does not require iterative calculations of the interaction between the wind flow and topography. The model is constructed by incorporating theory based on aerodynamics into a grain‐scale model that estimates the shear velocity at the dune crest through the calculation of the sand trapping efficiency of the slipface in the lee of the dune. Published field data, collected in southern Peru, California and southern Morocco, show that as a dune becomes higher the windward slope becomes steeper. For the model proposed, the wind flow over a dune was first assumed to be similar to that over a Gaussian hill. By further assuming a fixed shear velocity on the level surface, the windward slope angle and migration speed of dunes in southern Peru can be explained. To comply with all available data, some aspects are still open to further investigation. However the theoretical insight presented herein implies that the upper limit of dune height may be greater in windier environments.  相似文献   

17.
The pattern of grainfall deposition in the lee of aeolian dunes   总被引:1,自引:0,他引:1  
ABSTRACT
A simple model for the deposition pattern in the lee of aeolian dunes is presented that relies heavily upon a recently developed understanding of aeolian saltation. Grainfall deposition at any position on the lee face is the result of all saltation trajectories that leave any point on the surface of the dune upwind of the brink with sufficient initial velocity to travel the intervening distance. The deposition rate at any position on the lee slope is obtained by integrating over all combinations of initial position and required velocity, the velocity being weighted by its probability density.
The resulting calculated total deposition rate patterns show distinct maxima on the order of one to a few decimetres from the brink, beyond which deposition rates fall off roughly exponentially. An important length scale emerges that characterizes this decay with distance from the brink, the length increasing with wind velocity, and decreasing with grain diameter. It is shown that this length scale is on the order of one metre for typical grain size and wind conditions. That this is typically smaller than the length of the lee slope is what gives rise to the oversteepening and eventual avalanching of the lee sides of aeolian dunes. The position of a pivot point on the lee slope may be predicted, separating source regions from accumulation regions for grainflow avalanche deposits.
The calculated patterns provide not only a means for quantitative interpretation of active and fossil dune grainfall deposits, but they provide the initial geometry for grainflow avalanches. The initial failures should coincide with the steepest gradient in grainfall deposition, slightly downslope from the grainfall maximum.  相似文献   

18.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

19.
Conditions favourable for the formation of warm-climate aeolian sand sheets   总被引:1,自引:0,他引:1  
Aeolian sand sheets are areas of aeolian sand where dunes with slipfaces are generally absent. Sand sheets are ubiquitous to modern, warm-climate sand seas, generally occurring marginal to dune fields, although they may exist within the interior of a sand sea or independent of a dune field. Sand-sheet deposits are recognized in ancient aeolian sequences, where they may account for significant accumulations of low-angle aeolian stratification. We suggest that the occurrence of sand sheets instead of dunes indicates that conditions are outside the range within which dunes form or that one or more factors interfere with dune development while also favouring the accumulation of sand sheets. A study of six modern sand sheets in North America (located at Great Sand Dunes, Gran Desierto, Dumont, Algodones, Padre Island, and Colorado River delta) indicates that the factors favourable for sand-sheet development are: (1) a high water table, (2) surface cementation or binding, (3) periodic flooding, (4) a significant coarse-grained sediment population, and (5) vegetation. These factors are reflected in the nature of stratification and the accessory features of sand-sheet accumulations within the areas of modern sand sheets as well as in their ancient counterparts in the Triassic Dolores and Pennsylvanian-Permian Rico formations.  相似文献   

20.
A range of large-scale dunes of oolitic calcarenite composition are exposed in the Corinth Basin of central Greece. These transverse dunes and a very large linear dune (> 15 m high) lie within an Upper Pleistocene, transgressive marine sequence. Tidal flow, accelerated by constriction through a narrow, fault-bounded seaway, is interpreted to have generated the current velocities necessary to produce the dunes. Marine facies in the Upper Pleistocene sequence include beach to offshore conglomerates and sandstones with wave-modified sedimentary structures and herringbone cross-stratification. An offshore facies association comprises variably bioturbated siltstones and sandstones with a varied marine fauna that includes thermophile species such as scleractinian corals and Strombus bubonius. Oolitic sandstone facies also occur. Oolitic sands were apparently produced in shoal environments subject to tidal (and wave) action, and transported by dominant southerly currents over the southern part of the basin. Oolites accumulated in a linear dune 2.7 km long and 15–20 m high and in three-dimensional transverse dunes up to 10 m high having a variety of compound and simple internal geometries. The isolated, WSW-ENE-trending linear form exhibits angle of repose sedimentary dips (up to 35°) of avalanche sets on its SE flank and sets typically with dips of 15–20° to the NW. Internal high-angle discontinuities are developed in the SE-dipping lee face. It is proposed that a dominant north-to-south flow crossed over the crest obliquely, resulting in both net erosional and depositional processes on the lee flank. A subordinate (?tidal) current may have locally and or periodically crossed the dune crest in a westwards direction. A string of transverse dunes, which were located adjacent to a fault/marine terrace scarp, is interpreted to have originally coalesced to form the linear dune. The distribution of transverse and linear dunes together with the palaeogeographical reconstruction suggest that a marine connection periodically existed across the Corinth Isthmus during the Late Pleistocene due to a combination of active faulting and glacio-eustatic highstands of sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号