首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Private wells in Cayuga and Orange counties in New York were sampled to determine the occurrence of pesticide contamination of groundwater in areas where significant pesticide use coincides with shallow or otherwise vulnerable groundwater. Well selection was based on local groundwater knowledge, risk modeling, aerial photo assessments, and pesticide application database mapping. Single timepoint samples from 40 wells in each county were subjected to 93‐compound chromatographic scans. All samples were nondetects (reporting limits ≤1 μg/L), thus no wells from either county exceeded any of 15 state groundwater standards or guidance values. More sensitive enzyme‐linked immunosorbent assays (ELISA) found two wells with quantifiable atrazine in each county (0.1–0.3 μg/L), one well with quantifiable diazinon (0.1 μg/L) in Orange County, and one well with quantifiable alachlor (0.2 μg/L) in Cayuga County. Trace detections (<0.1 μg/L) in Cayuga County included atrazine (five wells), metolachlor (six wells), and alachlor (one well), including three wells with multiple detections. All 12 Cayuga County wells with ELISA detections had either corn/grain or corn/forage rotations as primary surrounding land uses (although 20 other wells with the same land uses had no detections) and all quantified detections and most trace detections occurred in wells up to 9‐m deep. Orange County trace (<0.1 μg/L) ELISA detections (atrazine three wells, diazinon one well, and metolachlor five wells) and quantified detections were only generally associated with agricultural land uses. Finding acceptable drinking water quality in areas of vulnerable groundwater suggests that water quality in less vulnerable areas will also be good.  相似文献   

2.
Atrazine, cyanazine, alachlor, and metolachlor in the surface water of a recharge structure, which impounds runoff from row-cropped farmland in Nebraska, are transported with seepage to the shallow ground water flow system and to the locally confined regional aquifer. All wells in the shallow flow system and all those in the regional flow system impacted by seepage from the structure had detectable concentrations of at least one of the four pesticides.
The detectable concentrations of cyanzine, alachlor, and metolachlor in the two flow systems ranged from 0.1 to 0.9 ppb. These concentrations were an order of magnitude lower than those in the surface water. Concentrations in the regional aquifer clustered at the lower end of this concentration range. These three pesticides were not detected in the baseline study of the regional aquifer.
Unlike alachlor, cyanzine, and metolachlor, atrazine was always present in the wells impacted by seepage from the recharge structure. In the shallow flow system, concentrations ranged from 0.3 to 8.8 ppb and from 0.1 to 2.5 ppb in the regional aquifer. The average of the detectable atrazine concentrations in the baseline study was 0.04 ± 0.05 ppb.  相似文献   

3.
Survey of Rural Wells in Missouri for Pesticides and Nitrate   总被引:2,自引:0,他引:2  
Two hundred and one rural wells were sampled in eight agricultural areas of Missouri. Samples were analyzed for 25 pesticides and nitrate. Forty-three percent of the wells sampled had at least one pesticide detection. Thirteen percent of the wells had at least one detection ≧ 1 ppb and these concentrations were confirmed. Only one well exceeded U.S. EPA Health Advisory levels. Twenty-two percent of the wells exceeded the U.S. EPA Drinking Water Standard for nitrate. Pesticide detections were most strongly correlated to well depth. Nitrate levels were primarily related to well depth, well construction methods, and well siting.  相似文献   

4.
Pesticide residues in ground water of the San Joaquin Valley, California   总被引:1,自引:0,他引:1  
A regional assessment of non-point-source contamination of pesticide residues in ground water was made of the San Joaquin Valley, an intensively farmed and irrigated structural trough in central California. About 10% of the total pesticide use in the USA is in the San Joaquin Valley. Pesticides detected include atrazine, bromacil, 2.4-DP, diazinon, dibromochloropropane, 1,2-dibromoethane, dicamba, 1,2-dichloropropane, diuron, prometon, prometryn, propazine and simazine. All are soil applied except diazinon.

Pesticide leaching is dependent on use patterns, soil texture, total organic carbon in soil, pesticide half-life and depth to water table. Leaching is enhanced by flood-irrigation methods except where the pesticide is foliar applied such as diazinon. Soils in the western San Joaquin Valley are fine grained and are derived primarily from marine shales of the Coast Ranges. Although shallow ground water is present, the fewest number of pesticides were detected in this region. The fine-grained soil inhibits pesticide leaching because of either low vertical permeability or high surface area; both enhance adsorption on to solid phases. Soils of the valley floor tend to be fine grained and have low vertical permeability. Soils in the eastern part of the valley are coarse grained with low total organic carbon and are derived from Sierra Nevada granites. Most pesticide leaching is in these alluvial soils, particularly in areas where depth to ground water is less than 30m. The areas currently most susceptible to pesticide leaching are eastern Fresno and Tulare Counties.

Tritium in water molecules is an indicator of aquifer recharge with water of recent origin. Pesticide residues transported as dissolved species were not detected in non-tritiated water. Although pesticides were not detected in all samples containing high tritium, these samples are indicative of the presence of recharge water that interacted with agricultural soils.  相似文献   


5.
The city of Lincoln draws water from a well field along the banks of the Platte River in east-central Nebraska. We have been able to follow the infusion of atrazine into this well field under induced recharge. Samples of water from the river, several monitoring wells and a production well were analyzed by GC/MS and solid phase extraction and found to change in concentration over the range 0.1 and 5.0 ppb of atrazine through the spring, summer, and fall 1989. Increases in the concentration of atrazine relating to precipitation events in the Platte River Basin were observable in the well water samples and ultimately in Lincoln municipal tap water. Atrazine from the river was seen to move via induced recharge and into well field ground water and away from the river at an observable rate. The concentration of atrazine in the river is dependent upon time of year and precipitation in the river basin.  相似文献   

6.
The results of a series of investigations are presented, performed by the governmental chemical laboratory Karlsruhe (CLUA) in order to determine pesticides in drinking water for purposes of food monitoring. 231 samples of 8 municipal water supplies (groundwater wells/no bank filtrate) and 34 private water supplies close to the bank of the river Rhine (groundwater wells/partly bank filtrate) were analysed. The sampling sites were located between Mannheim and Greffern, Germany. In 1986 high amounts of atrazine and simazine were determined in the drinking water wells of several private water supplies, especially at the sampling sites in the south. The likewise high chloride content of the samples was taken as a proof of bank filtrate contributing to the water. The decrease of atrazine load in the river water of the Rhine since 1987 has its parallel in the analytical results for the concerned drinking water wells. Obviously the pesticide contamination of water from bank filtrate pumping wells is mainly depending on the pesticide load of the river water. The application of fertilizers and pesticides in the fields seems not to be a significant source of the pesticide contamination of dringing waters derived from bank filtrate water. For reasons of public health a monitoring of pesticide content in bank filtrate pumping wells of private water supplies is recommended.  相似文献   

7.
The transport and potential toxicity of pesticides in Queensland (QLD) catchments from agricultural areas is a key concern for the Great Barrier Reef (GBR). In 2009, a pesticide monitoring program was established as part of the Australian and QLD Governments' Reef Plan (2009). Samples were collected at eight End of System sites (above the tidal zone) and three sub-catchment sites. At least two pesticides were detected at every site including insecticides, fungicides, herbicides, and the Reef Plan's (2009) five priority photosystem II (PSII) herbicides (diuron, atrazine, hexazinone, tebuthiuron and ametryn). Diuron, atrazine and metolachlor exceeded Australian and New Zealand water quality guideline trigger values (TVs) at eight sites. Accounting for PSII herbicide mixtures increased the estimated toxicity and led to larger exceedances of the TVs at more sites. This study demonstrates the widespread contamination of pesticides, particularly PSII herbicides, across the GBR catchment area which discharges to the GBR.  相似文献   

8.
Assessing Arkansas Ground Water for Pesticides: Methodology and Findings   总被引:1,自引:0,他引:1  
During 1985 to 1987, 119 wells, Springs and municipal drinking water supplies throughout Arkansas were monitored for the presence of pesticides. Pesticides selected for analysis included acifluorfen, alachlor, aldicarb, atrazine, benomyl, cyanazine, cypermethrin, 2,4-D, dichlorprop, diuron, fenvalerate, fluometuron, hexazinone, linuron, metolachlor, permethrin, picloram, and propanil. Not every sample was analyzed for every pesticide. Overall, results indicated that the 18 herbicides, fungicides, and insecticides were not present in the ground water samples studied. (Note: Detectable concentrations of three herbicides – alachlor, atrazine, and metolachlor – were found in one irrigation well, at 5.5,5.8, and 6.9 μg/L, respectively. However, since previous and subsequent sampling failed to detect these compounds, their presence is attributed to a localized spill or handling error rather than agricultural application.)  相似文献   

9.
Lowbush blueberries, native to eastern Canada and Maine, are an important economic crop in these areas. Herbicides containing the active ingredient hexazinone are commonly applied to blueberry fields, and there is a high frequency of detection of relatively low concentrations of hexazinone in domestic wells located close to areas of lowbush blueberry production. The objective of this study was to determine the long-term impacts from hexazinone-based herbicide use on ground water quality in the immediate growing areas.
Physical and chemical hydrogeologic data were collected for an outwash sand and gravel aquifer in southwestern New Brunswick, Canada. The majority of the land overlying the aquifer is devoted to lowbush blueberry production. Twenty-one nested monitoring wells were sampled for hexazinone and hexazinone metabolites over a four-year period. Hexazinone was consistently detected at values of 1 to 8 parts per billion (ppb) in all but two of these wells, one that is upgradient of herbicide applications, and one that is downgradient with anoxic conditions. Hexazinone metabolites B and A1 were also detected in all but two of the 21 wells at values ranging from 0.5 to 2.5 ppb. The hexazinone and metabolite data suggest both aerobic and anaerobic degradation of hexazinone. Complete degradation of hexazinone appears to occur only in the one downgradient well exhibiting anoxic ground water conditions. Concentrations of hexazinone and its metabolites in the ground water were essentially constant over the four-year period.  相似文献   

10.
Lincolns municipal wellfield consists of 44 wells developed in an alluvial aquifer adjacent to the Platte River near Ashland, Nebraska Induced recharge from the river is the primary source of water for the wellfield. Wafer samples were collected on a periodic basis from the Platte River arid two transects of monitoring wells. These samples were analyzed for the herbicide atrazine, which was used as a tracer of induced recharge in this stream-aquifer system. Atrazine concentrations in the river and aquifer were much less than 1.0 ppb during late fall and winter, but increased to as high as 18.9 ppb during spring and summer, associated with runoff from upgradient agricultural lands. There was approximately a 21-day lag time from the first detection of increasing atrazine concentration in the river to the first detection in monitoring wells immediately adjacent to the river. This lag time was relatively constant throughout the year and from one year to the next, even with major fluctuations of river stage and wellfield production. This consistency of lag time indicated that the travel times from the river to the first set of monitoring wells immediately adjacent to the river were fairly constant.
Paths of preferential flow were identified in the aquifer at a depth of 25 to 35 feet below land surface. This aquifer zone appeared to play a significant role in movement of water from beneath the river into the wellfield.
Aquifer dispersivity was calculated using a method described by Hoehn and Santschi (1987). Macrodispersivity (AL) was shown to increase linearly over the scale of the wellfield. Calculated values of AL were within limits of other reported values for this type of aquifer material and agreed well with values reported by Hoehn and Santschi (1987); These findings will be extremely beneficial for planning and management of the municipal wellfield.  相似文献   

11.
MTBE and gasoline hydrocarbons in ground water of the United States   总被引:1,自引:0,他引:1  
The occurrence of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons was examined in three types of studies of ground water conducted by the U.S. Geological Survey: major aquifer surveys, urban land-use studies, and agricultural land-use studies. The detection frequency of MTBE was dependent on the study type, with the highest detection frequency in urban land-use studies. Only 13 ground water samples from all study types, or 0.3%, had concentrations of MTBE that exceeded the lower limit of the U.S. EPA's Drinking-Water Advisory. The detection frequency of MTBE was highest in monitoring wells located in urban areas and in public supply wells. The detection frequency of any gasoline hydrocarbon also was dependent on study type and generally was less than the detection frequency of MTBE. The probability of detecting MTBE in ground water was strongly associated with population density, use of MTBE in gasoline, and recharge. Ground water in areas with high population density, in areas where MTBE is used as a gasoline oxygenate, and in areas with high recharge rates had a greater probability of MTBE occurrence. Also, ground water from public supply wells and shallow ground water underlying urban land-use areas had a greater probability of MTBE occurrence compared to ground water from domestic wells and ground water underlying rural land-use areas. The probability of detecting MTBE in ground water was weakly associated with the density of leaking underground storage tanks, soil permeability, and aquifer consolidation, and only concentrations of MTBE >0.5 microg/L were associated with dissolved oxygen.  相似文献   

12.
Pesticides used to maintain golf course turf can threaten ground water. This concern is particularly important in most of New York's Long Island, where generally sandy soils overlie a sole source aquifer. This study uses two methods to evaluate the potential for pesticides that are commonly used on Long Island's golf courses to leach to ground water.
Adapting the Pesticide Root Zone Model (PRZM). Release 1. for dense turf and applying site-specific soil data, certain pesticides, including metalaxyl and trichlorfon, are identified as potential problem leachers. PRZM simulations also identify the Long Island soils, including the sandy Plymouth and Carver soils, which arc most vulnerable to leaching.
When adequate input data for PRZM is unavailable, the ground water ubiquity score (GUS) method may be useful. GUS teachability classifications of pesticides commonly applied on Long Island golf courses, and of pesticides actually detected in ground water samples taken on Long Island, agree with PRZM predictions and the field data. The GUS method is applied to the evaluation of the leaching potential of pesticide degradation products (DCPA, maneb, and mancozeb metabolites), and the degradation products are shown to be a greater threat to ground water than their parent compounds.
These methods are potentially useful in designing ground water monitoring programs and for guiding the pesticide use and selection decisions of golf course managers.  相似文献   

13.
We began a study, in 1996, to compare ground water quality under irrigated and nonirrigated agriculture, sewered and nonsewered residential developments, industrial, and nondeveloped land uses. Twenty-three monitoring wells were completed in the upper meter of an unconfined sand aquifer. Between 1997 and 2000, sampling occurred quarterly for major ions, trace inorganic chemicals, volatile organic compounds (VOCs), herbicides, and herbicide degradates. On single occasions, we collected samples for polynuclear aromatic hydrocarbons (PAHs), perchlorate, and coliform bacteria. We observed significant differences in water chemistry beneath different land uses. Concentrations of several trace inorganic chemicals were greatest under sewered urban areas. VOC detection frequencies were 100% in commercial areas, 52% in sewered residential areas, and <10% for other land uses. Median nitrate concentrations were greatest under irrigated agriculture (15,350 microg/L) and nonsewered residential areas (6080 microg/L). Herbicides and degradates of acetanilide and triazine herbicides were detected in 86% of samples from irrigated agricultural areas, 68% of samples from nonirrigated areas, and <10% of samples from other land uses. Degradates accounted for 96% of the reported herbicide mass. We did not observe seasonal differences in water chemistry, but observed trends in water chemistry when land use changes occurred. Our results show land use is the dominant factor affecting shallow ground water quality. Trend monitoring programs should focus on areas where land use is changing, while resource managers and planners must consider potential impacts of land use changes on ground water quality.  相似文献   

14.
A ground water monitoring study was conducted for the triazine herbicide simazine at 11 sites in the United States. The study used carefully selected, small-scale sites (average size: about 33 acres) with documented product use and sensitive hydrogeological settings. The sites selected were Tulare County, California (two sites); Fresno County, California; Sussex County, Delaware; Hardee and Palm Beach counties, Florida; Winnebago County, Illinois; Jackson County, Indiana; Van Buren and Berrien counties, Michigan; and Jefferson County, West Virginia. These sites satisfied the following criteria: a history of simazine use, including the year prior to the start of the study; permeable soil and vadose zone; shallow depth to water; no restrictive soil layers above the water table; and gentle slopes not exceeding 2 percent. A variety of crop types, climates, and irrigation practices were included. Monitoring well clusters (shallow and deep) were installed at each site except in California and West Virginia, where only shallow wells were installed. Simazine was monitored at these sites at quarterly intervals for a two-year period during 1986–1988.
The results of the study showed that out of 153 samples analyzed, 45 samples showed simazine detections. A substantial majority of the detections (32 out of 45) occurred in Tulare, Fresno, and Jefferson counties. The detections in these areas were attributed to mechanisms other than leaching, such as drainage wells, karst areas, surface water recharge, or point source problems. An additional 11 detections in Van Buren County were apparently due to an unknown upgradient source. Only one detection (in Palm Beach County, Florida) near the screening level of 0.1 ppb was attributed to possible leaching. The results of this investigation support the hypothesis that simazine does not leach significantly under field use conditions.  相似文献   

15.
Detection of agricultural chemicals in ground water has prompted numerous studies. Federal, state, and regional studies were conducted in the last 10 years in order to assess the occurrence of agricultural chemicals in ground water. The results of the studies present the number or percentage of samples with agricultural chemicals above the drinking water standard or health advisory levels as well as samples with detections of one or more compounds. Data comparison from one state or region to another are frequently referred to by regulatory and agency personnel involved in water quality and agriculture issues. Unless the history of pesticide use, method of chemical analyses, detection limits, statistical design of the sampling plan, well type, well depth, geology of the formation material, and typical land use around the wellhead are known, such comparisons can be misleading. Reporting the limitations or presenting a disclaimer should be a key element for a study so that "apples and oranges" are not compared.  相似文献   

16.
Lincoln's municipal wellfield consists of 44 wells located adjacent to the Platte River near Ashland, Nebraska. The herbicide atrazine was monitored in the river and two transects of monitoring, wells. The amount of atrazine transported down the Platte River in 1989, 1990, and 1991 was shown to increase each year. Induced recharge from the Platte River results in movement of atrazine from the river into the aquifer. A 21-day lag time was determined for the movement of atrazine from the river to a transect of monitoring wells 10 feet West of the bank. The role that colloids play on the transport of atrazine was determined to be insignificant. A small percentage of atrazine found in the river was determined to come from rain water. The infiltration of agrichemical-contaminated river water was shown to significantly reduce the quality of raw water and finished water being produced by the adjacent aquifer.  相似文献   

17.
This paper summarizes a study to estimate the potential for dry-well drainage of urban runoff to recharge and pollute ground water in Tucson, Arizona. We selected three candidate dry wells for study. At each site we collected samples of runoff, dry-well sediment, vadose-zone sediment, perched ground water, and ground water. Water content data from vadose-zone samples suggest that dry-well drainage has created a transmission zone for water movement at each site. Volatile organic compounds, while undetected in runoff samples, were present in dry-well sediment, perched ground water at one site, and ground water at two sites. The concentrations of volatile organics (toluene and ethylbenzene) in the water samples were less than the corresponding EPA human health criteria. Pesticides were detected only in runoff and dry-well sediment. Lead and chromium occurred in runoff samples at concentrations above drinking water standards. Nickel, chromium, and zinc concentrations were elevated in vadose-zone samples at the commercial site. Of the metals, only manganese, detected at the residential site, exceeded Secondary Drinking Water Standards in ground water. It is concluded that the three dry wells examined during this study are currently not a major source of ground water pollution.  相似文献   

18.
Identification of major nitrate sources that adversely impact groundwater quality in municipal well capture zones in areas of emerging nitrate contamination is essential to minimize leaching and prevent exceedance of the nitrate drinking water standard. Vertical profiles of nitrate leachate in deep soils provide an estimate of the amount of nitrate in transit beneath irrigated, row-cropped fields; depths of peak leachate; and the approximate rate of downward movement. Profiles of pore-water soil-nitrate concentrations in thick 60-feet (~18 m), fine-textured soils near Hastings, Nebraska clearly indicate that considerably more nitrate leached beneath furrow-irrigated than center-pivot irrigated fields. Peak leaching appeared to correlate with recorded periods of poor weather conditions during some growing seasons and may best be controlled by “spoon feeding” fertilizer to the crop through the sprinkler irrigation system at times of nutrient need. The presence of trace levels of atrazine and deethylatrazine to 60 feet (18 m) in core samples indicates that larger, more complex anthropogenic molecules also leach through the fine-textured soils. The light δ15NNO3 values in the surficial groundwater beneath fertilized and irrigated cropland indicate that ammonium fertilizer is a major N source and suggest that the natural soil-N contribution is negligible. δ15NNO3 values were most enriched in irrigation wells located within municipal well capture zones downgradient of a large feedlot. Dual isotope method (DIM) δ15NNO3 and δ18ONO3 values suggest that the Hastings’ municipal wells farther downgradient are contaminated with a mixture of nitrate from manure and commercial ammonium-based fertilizer. DIM values indicate an absence of denitrification, which has implications for long-term management of the water resources.  相似文献   

19.
Bayless ER 《Ground water》2001,39(2):169-180
The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of macropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.  相似文献   

20.
Water-quality conditions in surficial unconsolidated aquifers were assessed in five agricultural regions in the United States. The assessment covers the Delmarva Peninsula, and parts of Long Island, Connecticut, Kansas, and Nebraska, and is based on water-quality and ancillary data collected during the 1980s. Concentrations of nitrate in ground water in these areas have increased because of applications of commercial fertilizers and manure. Nitrate concentrations exceed the maximum contaminant level (MCL) for drinking water of 10 milligrams per liter as nitrogen established by the U.S. Environmental Protection Agency in 12 to 46 percent of the wells sampled in the agricultural regions. Concentrations of nitrate are elevated within the upper 100 to 200 feet of the surficial aquifers. Permeable and sandy deposits that generally underlie the agricultural areas provide favorable conditions for vertical leaching of nitrate to relatively deep parts of the aquifers. The persistence of nitrate at such depths is attributed to aerobic conditions along ground-water-flow paths. Concentrations of nitrate are greatest in areas that are heavily irrigated or areas that are underlain by well-drained sediments; more fertilizer is typically applied on land with well-drained sediments than on poorly drained sediments because well-drained sediments have a low organic-matter content and low moisture capacity. Concentrations of other inorganic constituents related to agriculture, such as potassium and chloride from potash fertilizers, and calcium and magnesium from liming, also are significantly elevated in ground water beneath the agricultural areas. These constituents together impart a distinctive agricultural-chemical trademark to the ground water, different from natural water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号