首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central part of the Zagros Fold-Thrust Belt is characterized by a series of right-lateral and left-lateral transverse tear fault systems, some of them being ornamented by salt diapirs of the Late Precambrian–Early Cambrian Hormuz evaporitic series. Many deep-seated extensional faults, mainly along N–S and few along NW–SE and NE–SW, were formed or reactivated during the Late Precambrian–Early Cambrian and generated horsts and grabens. The extensional faults controlled deposition, distribution and thickness of the Hormuz series. Salt walls and diapirs initiated by the Early Paleozoic especially along the extensional faults. Long-term halokinesis gave rise to thin sedimentary cover above the salt diapirs and aggregated considerable volume of salt into the salt stocks. They created weak zones in the sedimentary cover, located approximately above the former and inactive deep-seated extensional faults. The N–S to NNE–SSW direction of tectonic shortening during the Neogene Zagros folding was sub-parallel with the strikes of the salt walls and rows of diapirs. Variations in thickness of the Hormuz series prepared differences in the basal friction on both sides of the Precambrian–Cambrian extensional faults, which facilitated the Zagros deformation front to advance faster wherever the salt layer was thicker. Consequently, a series of tear fault systems developed along the rows of salt diapirs approximately above the Precambrian–Cambrian extensional faults. Therefore, the present surface expressions of the tear fault systems developed within the sedimentary cover during the Zagros orogeny. Although the direction of the Zagros shortening could also potentially reactivate the basement faults as strike-slip structures, subsurface data and majority of the moderate-large earthquakes do not support basement involvement. This suggests that the tear fault systems are detached on top of the Hormuz series from the deep-seated Precambrian–Cambrian extensional faults in the basement.  相似文献   

2.
The Cariaco basin, located ∼40 km off the central part of the coast of Venezuela, is the largest (∼4000 km2) and bathymetrically deepest (1400 m BSL) Neogene fault-bounded basin within the right-lateral strike-slip plate boundary zone that separates the Caribbean and South American plates. Using subsurface geophysical data, we test two previously proposed tectonic models for the age, distribution and nature of east-west-striking, strike-slip faults, and basin-forming mechanism for the two main depocenters of the Cariaco basin. The earliest interpretation for the opening of the twin Cariaco depocenters by Schubert (1982) proposes that both depocenters formed synchronously by extension along transverse (north-south) normal faults at a ∼30-km-wide rhomboidally-shaped pull-apart basin between the right-lateral, east-west-striking, and parallel San Sebastian and El Pilar fault zones. A later model by Ben-Avraham and Zoback (1992) proposes that both depocenters formed synchronously by a process of ”transform-normal parallel extension”, or rifting in a north-south direction orthogonal to the east-west-striking and parallel strike-slip faults.We use more than 4000 km of 2D single- and multi-channel seismic data tied to 11 wells to map 5 tectono-stratigraphic sequences and to produce a series of structural and isopach maps showing how the faults that controlled both Cariaco depocenters evolved from Paleogene to the present. Comparison of fault and isopach maps for dated horizons from Paleogene to late Neogene in age show three main phases in basin development: 1) from middle Miocene to Pliocene, the West Cariaco basin formed as a rhomboidally-shaped pull-apart at a 30-km-wide stepover between the northern branch of the San Sebastian fault and the El Pilar fault zone; 2) during the early Pliocene, a new strike-slip fault transected the West Cariaco basin (southern branch of the San Sebastian fault) and caused extension to cease; and 3) during the early Pliocene to recent, a “lazy-Z” shaped pull-apart formed along the curving connection between the southern branch of the San Sebastian and El Pilar fault zones.  相似文献   

3.
琼东南盆地断裂构造与成因机制   总被引:24,自引:0,他引:24  
琼东南盆地断裂较为发育,主要发育NE、近EW和NW向的三组断裂,其中NE向和近EW向断裂是主要的控盆断裂。盆地早期发育主要受基底先存断裂的控制,形成了众多裂陷构造;晚期主要受热沉降作用控制,断裂不太发育,对沉积的控制作用较弱,从而使盆地具有典型的裂陷盆地和双层结构特征。琼东南盆地受到太平洋俯冲后撤、印藏碰撞和南海张开等多期构造的作用,盆地的裂陷期可以分为两阶段:始新世—早渐新世的整体强张裂期,晚渐新世—早中新世的弱张裂期。  相似文献   

4.
4D analogue modelling of transtensional pull-apart basins   总被引:3,自引:0,他引:3  
Scaled sandbox models were used to investigate the 4D evolution of pull-apart basins formed above underlapping releasing stepovers in both pure strike-slip and transtensional basement fault systems. Serial sectioning and 3D volume reconstruction permitted analysis of the full 3D fault geometries. Results show that very different pull-apart basins are developed in transtension compared to pure strike-slip. Both types of models produced elongate, sigmoidal to rhomboidal pull-apart systems, but the transtensional pull-apart basins were significantly wider and uniquely developed a basin margin of en-echelon oblique-extensional faults. Dual, opposing depocentres formed in the transtensional model whereas a single, central depocentre formed in pure strike-slip. In transtension, a distinct narrow graben system formed above the principal displacement zones (PDZs). Cross-basin fault systems that linked the offset PDZs formed earlier in the transtensional models.Sequential model runs to higher PDZ displacements allowed the progressive evolution of the fault systems to be evaluated. In cross-section, transtensional pull-aparts initiated as asymmetric grabens bounded by planar oblique-extensional faults. With increasing displacement on the PDZs, basin subsidence caused these faults to become concave-upwards and lower in dip angle due to fault block collapse towards the interior of the basin. In addition, strain partitioning caused fault slip to become either predominantly extensional or strike-slip. The models compare closely with the geometries of natural pull-apart basins including the southern Dead Sea fault system and the Vienna Basin, Austria.  相似文献   

5.
华北板块东部新生代断裂构造特征与盆地成因   总被引:22,自引:3,他引:19  
华北板块东部新生代的构造特征及动力学演化主要受左行郯庐断裂带和右行兰考-聊城-台安-大洼-法哈牛断裂带的控制。这两条断裂都是新生代岩石圈断裂。在兰考-聊城-台安-大洼-法哈牛断裂带以西,新生代伸展盆地为NNE走向的铲形正断层控制的箕状断陷;两断裂之间为北断南超的NWW走向的断陷盆地;郯庐断裂以东的北黄海盆地为南断北超的Nww走向的断陷盆地。这些构造特征继承了该区中生代的构造格局,但其构造性质发生了根本变化,在这两条走滑方向相反的断裂带控制下,这两条断裂带内古近纪以张扭作用下的裂陷为主,随后以伸展断陷为主,第四纪沿两断裂带局部发生挤压,而鲁西地块和渤海湾盆地区仍然为伸展正断。渤海湾盆地及邻区这些新生代复杂的断块或断裂构造格局受控于应力-应变-基底格局3个基本要素。  相似文献   

6.
Sequence stratigraphy and syndepositional structural slope-break zones define the architecture of the Paleogene syn-rift, lacustrine succession in eastern China's Bohai Bay Basin. Jiyang, Huanghua and Liaohe subbasins are of particular interest and were our primary research objectives. Interpretation of 3D seismic data, well logs and cores reveals: One first-order sequence, 4 second-order sequences, and ten to thirteen third-order sequences were identified on the basis of the tectonic evolution, lithologic assemblage and unconformities in the subbasins of Bohai Bay Basin. Three types of syndepositional paleo-structure styles are recognized in this basin. They are identified as fault controlled, slope-break zone; flexure controlled, slope-break zone; and gentle slope.The three active structural styles affect the sequence stratigraphy. Distinct third-order sequences, within second-order sequences, have variable systems tract architecture due to structuring effects during tectonic episodes. Second-order sequences 1 and 2 were formed during rifting episodes 1 and 2. The development of the third-order sequences within these 2 second-order sequences was controlled by the active NW and NE oriented fault controlled, slope-break zones. Second-order sequence 3 formed during rifting episode 3, the most intense extensional faulting of the basin. Two types of distinctive lacustrine depositional sequence were formed during rifting episode 3: one was developed in an active fault controlled, slope-break zone, the other in an active flexure controlled, slope-break zone. Second-order sequence 4 was formed during the fourth episode of rifting. Syndepositional, fault- and flexure-controlled slope-break zones developed in the subsidence center (shore to offshore areas) of the basin and controlled the architecture of third-order sequences in a way similar to that in second-order sequence 3. Sequences in the gentle slope and syndepositional, flexure controlled slope-break zones were developed in subaerial region.Distribution of lowstand sandbodies was controlled primarily by active structuring on the slope-break zones, and these sandbodies were deposited downdip of the slope-break zones. Sand bodies within lowstand systems tracts have good reservoir quality, and are usually sealed by the shale sediments of the subsequent transgressive systems tract. They are favorable plays for stratigraphic trap exploration.  相似文献   

7.
Bone Gulf is one of the inter-arm basins of the unusual K-shaped island of Sulawesi. Its age, character and origin are disputed. This study is based on recently acquired 2D seismic lines, seabed multibeam mapping and limited well data, and is linked to stratigraphy on land. The gulf is probably underlain by pre-Neogene volcanogenic, sedimentary, metamorphic and ultramafic rocks, and includes crust of Australian origin. We favour basin initiation in the Miocene rather than Eocene, by extension associated with strike-slip deformation. The main basin trends N–S and is divided into several sub-basins and highs. The highs segment the gulf and their WNW–ESE orientations reflect pre-Neogene basement structures. They are interpreted as strike-slip fault zones active at different times in the Neogene. A southern high was active relatively early, whereas further north there is evidence of young displacements during the Late Neogene. These are visible on the seabed above a high linked to the Kolaka Fault on land. Early basin-bounding faults are oriented NNW–SSE and record extension and strike-slip movements, like the sub-parallel Walanae Fault of South Sulawesi which can be traced offshore into extensional faults bounding the young and narrow Selayar Trough. Sediment in the basins came mainly from the north with contributions from both west and east. Carbonate deposits formed at the margins while deeper marine sediments were deposited in the axial parts of the gulf. An Early Pliocene unconformity can be mapped across the study area marking major uplift of Sulawesi and subsidence of Bone Gulf. This regional event caused major influx of clastic sediments from the north, development of a southward-flowing canyon system, and back-stepping and drowning of carbonates at the basin margins. Hydrocarbons are indicated by seeps, and Bone Gulf has potential sources, reservoirs and seals, but the complex faulting history is a risk.  相似文献   

8.
The coupled tectonic and depositional history of extensional basins is usually described in terms of stratigraphic sequences linked with the activity of normal faults. This depositional-kinematic interplay is less understood in basins bounded by major extensional detachments or normal fault systems associated with significant exhumation of footwalls. Of particular interest is the link between tectonics and sedimentation during the migration of normal faulting in time and space across the basin. One area where such coupled depositional-kinematic history can be optimally studied is the Late Oligocene - Miocene Sarajevo-Zenica Basin, located in the Dinarides Mountains of Bosnia and Herzegovina. This intra-montane basin recorded Oligocene – Pliocene sedimentation in an endemic and isolated lake environment. We use field kinematic and sedimentological mapping in outcrops correlated with existing local and regional studies to derive a high-resolution evolutionary model of the basin. The novel results demonstrate a close correlation between moments of normal faulting and high-order sedimentological cycles, while the overall extensional basin was filled by a largely uni-directional sediment supply from the neighbouring mountain chain. The migration in time and space of listric NE-dipping normal faults was associated with a gradual shift of the sedimentological environment. Transgressive-regressive cycles reflect sequential displacements on normal faults and their footwall exhumation, defining a new sedimentological model for such basins. This Early - Middle Miocene extension affected the central part of the Dinarides and was associated with the larger opening of the neighbouring Pannonian Basin. The extension was preceded and followed by two phases of contraction. The Oligocene - Early Miocene thrusting took place during the final stages of the Dinarides collision, while the post-Middle Miocene contraction is correlated with the regional indentation of the Adriatic continental unit. This latter phase inverted the extensional basin by reactivating the inherited basal listric detachment.  相似文献   

9.
渤海湾及沿岸盆地的构造格局   总被引:4,自引:0,他引:4  
李德生 《海洋学报》1980,2(4):93-101
渤海湾及沿岸盆地面积约20万平方公里,包括河北省,山东省北部和西部、辽宁省南部、河南省北部、天津市和北京市等陆地面积约12万7千平方公里,渤海海域面积为7万多平方公里。陆地面积大部被第四纪冲积层所覆盖。渤海最大深度为70米,平均深度为18米。这是一个大型的第三纪断陷-坳陷沉积盆地,是继大庆油田开发之后,在我国东部地区所开发的另一个重要的含油气盆地(图1)。  相似文献   

10.
北部湾盆地北部坳陷构造——沉积特征及其演化   总被引:1,自引:0,他引:1  
在二维和三维地震资料解释基础上,对北部湾盆地北部坳陷地层分布及断裂系统进行了研究,建立了坳陷断裂分布格局及构造样式;结合地层和钻井资料分析了断裂活动期次和特征,揭示古近纪坳陷构造演化经历了三期幕式断陷活动:古新世,初期拉张裂陷阶段,形成狭小的半地堑;始新世早中期,第二期强烈拉张裂陷阶段,形成统一的湖盆,发育两个沉积中心;渐新世,断坳转换期,涠西南低凸起和3号断裂强烈活动,沉积中心迁移至海中凹陷.这为进一步油气勘探工作提供了有价值的参考.  相似文献   

11.
TECTONIC FRAMEWORKS OF THE BOHAI GULF AND COASTAL, BASINS   总被引:2,自引:0,他引:2  
The Bobai Gulf and its coastal basin is an important oil and gas province of China that covers an area of 200,000 sq. km.It is a polycylic superimposed basin. Its history of development can be subdivided into four stages: (i) Late Proterozoic parageosydine stage (Sinian); (ii) Early palaeozoic cratonic stage (Lower Cambrian-Middle Ordovician): (iii) Late palaeozoic intracratonic coal bearing sequences stage (Middle Carboniferous-Permian); (iv) Mesozoic and Cenozoic taphrogenic rifting and subsidence stages.During the Paieogene rifting stage, three NNE trough systems and three nearly E-W trough systems were initialed as the results of regional extensional stresses. Central rift valleys, low angle gravity faults and a series of asymmetrical half-grabens were developed surrounding the "Bohai Mantle Plume ". Th- riftitip troughs were egtended ard widened gradually. During the Neocene, a large saucer-shaped sedimentary basins was developed into a thick blanket covering the whole areas of either the Paleogene  相似文献   

12.
Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.  相似文献   

13.
珠江口盆地中新生代主要断裂特征和动力背景分析   总被引:22,自引:0,他引:22  
对新处理及新采集的地质地球物理资料进行综合分析,结合前人研究成果,编制了中生代和新生代珠江口盆地主要断裂图,讨论了主要断裂的存在证据、展布形态、活动性质以及它们与盆地各级构造发育的关系等基本特征,并初步分析了它们形成演化的地球动力学背景。珠江口盆地断裂主要由NEE向和NW向断裂组组成,其次为NWW向断裂组和NE向断裂组。中生代西太平洋俯冲带呈NESW向穿过南海东北部,相伴的有NE向火山弧、弧前盆地等压性构造和NW向左行走滑断裂,构成左行压扭体系。晚白垩纪至新生代NEE及NWW向断裂带控制了大规模张裂和沉积盆地的形成,又被NW向断裂带错切,形成了南北分带、东西分块的构造格局,显示了右行张扭应力场特征。  相似文献   

14.
We studied the active deformation zone of the middle strand of the North Anatolian Fault Zone through the southern part of the Sea of Marmara by means of high-resolution as well as deep seismic reflection data. Our main objective was to investigate the active deformation within the uppermost sedimentary layers at high resolution as well as deeper sedimentary layers, focusing on the tectonic and stratigraphic setting between Gemlik and Bandırma. The middle strand of the North Anatolian Fault reaching the Gulf of Gemlik is a main fault which has a lazy-S shape in the Gulf of Gemlik, and extends westwards to Bandırma as a main fault which is an E–W-trending single right-lateral fault controlling the zone along the Gemlik and Bandırma sub-basins. Small-scale faults, consistent with a dextral shear regime, are present in the vicinity of the main fault. Several oblique fault groups parallel to the main fault were detected. The deformation in the Gulf of Gemlik is characterized by a series of synthetic and antithetic faults emanating from the main fault. The boundary faults in the Gulf of Gemlik have a compressive component, which indicates the sill areas of the gulfs of Gemlik and Bandırma to be push-up structures. Four seismic stratigraphic units were identified in the sediments of the gulfs of Gemlik and Bandırma, providing evidence of tectonic influence. The present tectonic structure between Gemlik and Bandırma is not a pull-apart structure. The microseismic study in this area has shown that fault planes are either strike-slip or compressional, and that the stress tensor is compatible with pure strike-slip in the E–W fault system.  相似文献   

15.
南昆嵩地区是万安盆地西部负向构造单元,其中部N–S向断裂贯穿南北,独特的构造特征使其成为研究万安盆地西部构造演化与区域断裂走滑活动的窗口。将研究区沉积地层划分为3套构造层,通过回剥法绘制南昆嵩地区构造–沉积充填剖面,并计算南昆嵩地区构造沉降量以及构造沉降速率,论述南昆嵩地区构造演化史与沉降过程以及控制因素。研究结果表明:下部构造层和中部构造层中断裂组合样式主要为卷心型断层、“Y”型断层、阶梯状断层和高角度花状构造等,断裂延伸方向大致可分为:N–S向、W–E向和NE–SW向3种;上部构造层断裂不发育,为稳定沉积;在区域走滑断裂以及南海扩张运动的控制下,南昆嵩地区始新世以来构造演化经历4个阶段:初始裂谷期、伸展断拗期、走滑改造期和热沉降期,新生代地层构造性质也表现为以伸展与走滑作用为主–走滑断裂控制–热沉降的三段式转变。  相似文献   

16.
莱州湾西构造带断裂特征及其对油气成藏的控制   总被引:1,自引:0,他引:1  
受古近纪莱州湾凹陷大规模断陷、郯庐断裂右旋走滑和垦东凸起大规模隆升三方面因素共同作用,莱州湾西构造带断裂系统发育,根据断裂性质及发育规模将断裂划分为3组不同方向的断裂组合,对油气的运移、聚集及保存都产生重要影响。根据莱州湾地区油气成藏规律并结合渤海其他区域近年勘探成果综合分析,莱北1号断层、斜坡区东西向反向正断层和走滑末端雁行式断层三类大规模调节断层对于油气成藏影响作用较大,这三类断层所控制的圈闭也是莱州湾凹陷及围区下一步勘探获得突破的重点区域。  相似文献   

17.
琼东南盆地古近纪沉积充填演化及其区域构造意义   总被引:21,自引:1,他引:21  
琼东南盆地是发育于南海西北部的新生代张性断陷盆地。始新统和早渐新统崖城组属过充填型或平衡充填类型,在盆地各个断陷内均具有砂岩-泥岩-砂岩三重沉积充填结构;晚渐新统陵水组在北部坳陷带属过充填及平衡充填类型,发育砂岩-泥岩-砂岩三重沉积充填结构,而在中央坳陷带则属由砂岩-泥岩二重沉积充填结构组成的欠充填型。古近纪盆地的沉积充填结构演化反映了始新世-早渐新世断陷阶段与晚渐新世断拗阶段的盆地演化历史,其中,晚渐新世盆地断拗阶段的发育是南海海底单期扩张过程的结果。  相似文献   

18.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

19.
The Edremit Gulf, which developed during the Neogene-Quaternary, is a seismically active graben in NW Anatolia (Turkey) surrounded by the Sakarya continent. The sedimentary deposits in the gulf overlie the bedrock unconformably and can be separated into two parts as upper and lower deposits based on similarity of their seismic characteristics, and because the contact between them is clear. The lower deposits are characterized in the seismic profiles by the absence of well defined, continuous reflectors and are strongly disturbed by faults. A tectonic map and structural model of the Edremit Gulf was derived from interpreting 21 deep seismic profiles trending NE–SW and NW–SE within the gulf. Two fault systems were distinguished on the basis of this compilation. The NNW–SSE trending parallel faults are low-angle normal faults formed after compression. They controlled and deformed the lower basin deposits. A syncline and anticline with a broad fold-curvature length resulted in folds that developed parallel to basin boundaries in the lower basin deposits. The ENE–WSW trending high-angle faults have controlled and deformed the northern basin of the Edremit Gulf. The folds developed within the northern lower deposits originated from the listric geometry of the faults. These faults are normal faults associated with regional N–S extension in western Anatolia. The Edremit Gulf began to open under the control of low-angle NNW–SSE trending faults that developed after the compression of western Anatolia in an E–W direction in the early Neogene. Subsequently, regional N–S extensional stress and high-angle normal faults cut the previous structures, opened the northern basin, and controlled and deformed the lower basin deposits in the gulf. As a result, the Edremit Gulf has not been controlled by any strike-slip faults or the Northern Anatolian Fault. The basin developed in the two different tectonic regimes of western Anatolia as an Aegean type cross-graben from the Neogene to Holocene.  相似文献   

20.
This study analyzes the structural development of the Gunsan Basin in the central Yellow Sea, based on multi-channel seismic reflection profiles and exploratory well data. The basin comprises three depressions (the western, central, and eastern subbasins) filled with a thick (ca. 6000 m) Cretaceous to Paleogene nonmarine succession. It was initiated in the early Cretaceous due to intracontinental extension caused by oblique subduction of the Izanagi plate under the Eurasian plate and sinistral movement of the Tan-Lu fault. The basin appears to have undergone transtension in the late Cretaceous–Eocene, caused by dextral movement of the Tan-Lu and its branching faults. The transtension was accommodated by oblique intra-basinal normal faults and strike-slip (or oblique-slip) movement of a NE-trending bounding fault in the northern margin of the central subbasin. The entire basin was deformed (NE–SW contraction) in the Oligocene when tectonic inversion occurred, possibly due to the changes in strike-slip motion, from right- to left-lateral, of the Tan-Lu fault. During the early Miocene, extension resumed by reactivation of the pre-existing normal and transpressional faults. A combination of extension, uplift, and erosion resulted in differential preservation of the early Miocene succession. At the end of the early Miocene, extension ceased with mild contraction and then the basin thermally subsided with ensued rise in sea level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号