首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of “p–y” curves has been extensively used, in conjunction with simplified numerical methods, for the design and response evaluation of single piles. However, a straightforward application of the method to assess the response of pile groups is questionable when the group effect is disregarded. For this reason, the notion of p-multipliers has been therefore introduced to modify the “py” curves and account for pile group effect. The values proposed for p-multipliers result from pile group tests and are limited to the commonly applied spacing of 3.0 D and layout less than 3 × 3, restricting the applicability of the method to specific cases. With the aim of extending the applicability of the “py” method to pile groups, the authors have already proposed a methodology for estimating the “p Gy G” curves of soil resistance around a pile in a group for clayey soils. A complementary research allowing for the estimation of the “p Gy G” curves for sandy soils is presented in this paper. The well-known curves of soil resistance around the single pile in sandy soils are appropriately transformed to allow for the interaction effect between the piles in a group. Comparative examples validate the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used in a most accurate manner in estimating the distribution of forces and bending moments along the characteristic piles of a group and therefore to design a pile foundation more accurately.  相似文献   

2.
The aim of this paper is to investigate the interaction between the piles in a group with a rigid head and correlate the response of a group of piles to that of a single pile. For this purpose, a computationally intensive study using 3‐D nonlinear numerical analysis was carried out for different pile group arrangements in clayey soils. The responses of the groups of piles were compared with that of a single pile and the variation of the settlement amplification factor Ra was then quantified. The influence of the number of piles, the spacing, and the settlement level on the group response is discussed. A previously proposed relationship for predicting the response of a pile group, based on its configuration and the response of a single pile, has been modified to extend its applicability for any pile spacing. The modified relationship provides a reasonable prediction for various group configurations in clayey soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Although simplified numerical methods are reliable for evaluating the response of a single pile under horizontal load, their application is questionable for assessing the response of pile groups. The notion of “py” curves has been considered with the aim of establishing a transformation relationship able to provide the “pGyG” curves of soil resistance around a pile in a group from the well-known curves of soil resistance around the single pile.This transformation extends the applicability of the “py” method to pile groups, without the need for time consuming numerical computations, rendering the proposed method efficient and attractive. Comparative examples demonstrated the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used to estimate accurately force and bending moment distributions along the characteristic piles of a group, which are required for the efficient design of foundations.  相似文献   

4.
A quasi-3D continuum method is presented for the dynamic nonlinear effective stress analysis of pile foundation under earthquake excitation. The method was validated using data from centrifuge tests on single piles and pile groups in liquefiable soils conducted at the University of California at Davis. Some results from this validation studies are presented. The API approach to pile response using py curves was evaluated using the quasi-3D method and the results from simulated earthquake tests on a model pile in a centrifuge. The recommended API stiffnesses appear to be much too high for seismic response analysis under strong shaking, but give very good estimates of elastic response.  相似文献   

5.
A numerical method of analysis based on elasticity theory is presented for the analysis of axially and laterally loaded pile groups embedded in nonhomogeneous soils. The problem is decomposed into two systems, namely the group piles acted upon by external applied loads and pile–soil interaction forces, and a layered soil continuum acted upon by a system of pile–soil interaction forces at the imaginary positions of the piles. The group piles are discretized into discrete elements while the nonhomogeneous soil behaviour is determined from an economically viable finite element procedure. The load–deformation relationship of the pile group system is then determined by considering the equilibrium of the pile–soil interaction forces, and the compatibility of the pile and soil displacements. The influence of soil nonlinearity can be studied by limiting the soil forces at the pile–soil interface, and redistributing the ‘excess forces’ by an ‘initial stress’ process popular in elasto-plastic finite element analysis. The solutions from this approach are compared with some available published solutions for single piles and pile groups in homogeneous and nonhomogeneous soils. A limited number of field tests on pile groups are studied, and show that, in general, the computed response compares favourably with the field measurements.  相似文献   

6.
锚杆静压桩托换技术施工采用分节压桩,整桩压入时压力不连续,区别于中长预制桩的压桩方式。压桩力受地层影响较为明显。特别是粘性土与砂性土中压桩,最终压桩力的大小有明显区别。在无试桩结果条件下,正确采用最终压桩力,是设计部门较为关心的问题,关系到是否满足单桩设计要求的问题。通过实例,依据基桩静荷载测试成果、小应变动测资料,对在砂性土中锚杆静压桩最终压桩力与设计单桩承载力值的关系,进行分析探讨,并在理论上作了粗浅的定性分析,本文在实际应用中,可作为取用或调整Kp值的依据。  相似文献   

7.
This paper presents the numerical simulation of pile installation and the subsequent increase in the pile capacity over time (or setup) after installation that was performed using the finite element software Abaqus. In the first part, pile installation and the following load tests were simulated numerically using the volumetric cavity expansion concept. The anisotropic modified Cam-Clay and Dracker–Prager models were adopted in the FE model to describe the behavior of the clayey and sandy soils, respectively. The proposed FE model proposed was successfully validated through simulating two full-scale instrumented driven pile case studies. In the second part, over 100 different actual properties of individual soil layers distracted from literature were used in the finite element analysis to conduct parametric study and to evaluate the effect of different soil properties on the pile setup behavior. The setup factor A was targeted here to describe the pile setup as a function of time after the end of driving. The selected soil properties in this study to evaluate the setup factor A include: soil plasticity index (PI), undrained shear strength (S u ), vertical coefficient of consolidation (C v ), sensitivity ratio (S r ), and over-consolidation ratio (OCR). The predicted setup factor showed direct proportion with the PI and S r and inverse relation with S u , C v and OCR. These soil properties were selected as independent variables, and nonlinear multivariable regression analysis was performed using Gauss–Newton algorithm to develop appropriate regression models for A. Best models were selected among all based on level of errors of prediction, which were validated with additional nineteen different site information available in the literature. The results indicated that the developed model is able to predict the setup behavior for individual cohesive soil layers, especially for values of setup factor greater than 0.10, which is the most expectable case in nature.  相似文献   

8.
The response of laterally loaded pile foundations may be significantly important in the design of structures for such loads. A static horizontal pile load test is able to provide a load–deflection curve for a single free‐head pile, which significantly differs from that of a free‐ or fixed‐head pile group, depending on the particular group configuration. The aim of this paper is to evaluate the influence of the interaction between the piles of a group fixed in a rigid pile cap on both the lateral load capacity and the stiffness of the group. For this purpose, a parametric three‐dimensional non‐linear numerical analysis was carried out for different arrangements of pile groups. The response of the pile groups is compared to that of the single pile. The influence of the number of piles, the spacing and the deflection level to the group response is discussed. Furthermore, the contribution of the piles constituting the group to the total group resistance is examined. Finally, a relationship is proposed allowing a reasonable prediction of the response of fixed‐head pile groups at least for similar soil profile conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
《Computers and Geotechnics》2006,33(6-7):355-370
A numerical method that takes into account the coupling between the rigidities of the piles, the cap, and the column has been developed for analyzing the response of pile group supported columns. Special attention is given to consideration of pile cap flexibility. A load transfer approach using tz/qz and py curves is used for the analysis of single piles. The finite element technique is used to combine the pile stiffness with the stiffness of the cap and column. The numerical method developed has been verified by comparing the results with other numerical methods for pile groups. Through comparative studies, it has been found that the maximum load on the individual piles in a group is highly influenced by pile cap flexibility. The prediction of the lateral loads and bending moments in the pile cap is much more conservative in the present analysis than in FBPier 3.0 and shows a definitely larger lateral load and bending moment for various cap thicknesses.  相似文献   

10.
The shear modulus at small-strain, G max is a maximum value of shear modulus for a given stress state and void ratio, and is a key parameter to evaluate the dynamic response of geotechnical structures. However, the laboratory testing procedures for determining G max are time-consuming, cumbersome and require elaborate equipment especially for unsaturated soil samples. A semi-empirical model is proposed in this paper that can be used to estimate the variation of G max with respect to matric suction for non-plastic sandy soils (i.e. I p  = 0 %). The proposed model uses the Soil–Water Characteristic Curve (SWCC) and the shear modulus at saturation condition along with two fitting parameters ζ and ξ. The proposed model permits estimation of the variation of G max with respect to matric suction over different zones of the SWCC (i.e. boundary effect, transition, and residual zones) for various non-plastic sandy soils. The fitting parameters ζ and ξ required for the proposed semi-empirical model can be estimated from simple relationships derived from the grain size distribution curve.  相似文献   

11.
Piled foundations are frequently subjected to simultaneous axial and lateral loadings. However, the interaction effects of the one loading on the other are, in most cases, disregarded for the sake of simplicity. With the aim of evaluating this effect, a detailed research work on the response of a single pile under simultaneous application of axial and lateral loading was carried out. A qualitative assessment of the effect was initially attempted and the effect was afterwards quantified, based on the results of an intensive three-dimensional parametric numerical analysis. The influence arising from pile head fixity and the second order phenomenon was examined, while the post-peak behaviour was also considered using a strain hardening/softening constitutive law. Interesting conclusions have been drawn, providing a qualitative and quantitative evaluation of the effect on clayey and sandy soils. It was also found that no loading interaction effect is developed, when ultimate limit state is applied for a piled foundation design. On the contrary, when the serviceability limit state is applied and if the pile capacity in both lateral and axial loading is simultaneously reached, a reduction in the pile axial capacity is observed in the case of clayey soils. On the contrary, in the case of sandy soils the action of a lateral load is leading to an increase of pile axial capacity.  相似文献   

12.
An efficient analytical approach using the finite element (FE) method, is proposed to calculate the bending moment and deflection response of a single pile under the combined influence of lateral and axial compressive loading during an earthquake, in both saturated and dry homogenous soil, and in a typical layered soil. Applying a pseudo-static method, seismic loads are calculated using the maximum horizontal acceleration (MHA) obtained from a seismic ground response analysis and a lateral load coefficient (a) for both liquefying and non-liquefying soils. It is observed that for a pile having l/d ratio 40 and embedded in dry dense sand, the normalized moment and displacement increase when the input motion becomes more severe, as expected. Further increasing of a from 0.1 to 0.3 leads to increase in the normalized moment and displacement from 0.033 to 0.042, and 0.009 to 0.035, respectively. The validity of the proposed FE based solution for estimating seismic response of pile is also assessed through dynamic centrifuge test results.  相似文献   

13.
An investigation is made to present analytical solutions provided by a Winkler model approach for the analysis of single piles and pile groups subjected to vertical and lateral loads in nonhomogeneous soils. The load transfer parameter of a single pile in nonhomogeneous soils is derived from the displacement influence factor obtained from Mindlin's solution for an elastic continuum analysis, without using the conventional form of the load transfer parameter adopting the maximum radius of the influence of the pile proposed by Randolph and Wroth. The modulus of the subgrade reaction along the pile in nonhomogeneous soils is expressed by using the displacement influence factor related to Mindlin's equation for an elastic continuum analysis to combine the elastic continuum approach with the subgrade reaction approach. The relationship between settlement and vertical load for a single pile in nonhomogeneous soils is obtained by using the recurrence equation for each layer. Using the modulus of the subgrade reaction represented by the displacement influence factor related to Mindlin's solution for the lateral load, the relationship between horizontal displacement, rotation, moment, and shear force for a single pile subjected to lateral loads in nonhomogeneous soils is available in the form of the recurrence equation. The comparison of the results calculated by the present method for single piles and pile groups in nonhomogeneous soils has shown good agreement with those obtained from the more rigorous finite element and boundary element methods. It is found that the present procedure gives a good prediction on the behavior of piles in nonhomogeneous soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The use of shear wave velocity (V s) measurements as an in situ test for evaluation of liquefaction potential has increased substantially due to its advantages. Relatively large numbers of studies have been performed to establish the correlation between V s and liquefaction resistance (CRR) of clean sands. Usually, natural sands contain silt and/or clay, and previous studies have shown that both the amount of fines and their nature influence the values of CRR as well as V s. Therefore, the CRR–V s correlations may also be affected by fines content and type of sandy soils. However, effect of fines content and especially fines type of sandy soils on the correlation between V s and CRR is inadequately addressed in the literature. In this study, cyclic triaxial and bender element tests were conducted on samples of sand containing various amounts of different types of fines, and the effects of fines on the values of CRR and V s are investigated. The results show that G 0 and CRR reduce even when small amounts of fines are added to sand. Therefore, use of plasticity index (PI) of the fines fraction is better than the PI of the overall soil when trying to assess the effects of fines. Using obtained experimental data as well as the established semiempirical CRR–V s relationship, the CRR–V s correlation was developed for all the tested soils, and the effect of fines type on the correlation is also examined. Based on the results obtained in this study, CRR–V s correlation is affected by both the amount and the plasticity of the fines present in the sand, and this correlation is soil specific.  相似文献   

15.
Lateral load-deflection behaviour of single piles is often analysed in practice on the basis of methods of load-transfer PY curves. The paper is aimed at presenting the results of the interpretation of five full-scale horizontal loading tests of single instrumented piles in two sandy soils, in order to define the parameters of PY curves, namely the initial lateral reaction modulus and the lateral soil resistance, in correlation with the pressuremeter test parameters. PY curve parameters were found varying as a power of lateral pile/soil stiffness, on the basis of which hyperbolic PY curves in sand were proposed. The predictive capabilities of the proposed PY curves were assessed by predicting the soil/pile response in full-scale tests as well as in centrifuge tests and a very good agreement was found between the computed deflections and bending moments, and the measured ones. Small-sized database of full-scale pile loading tests in sand was built and a comparative study of some commonly used PY curve methods was undertaken. Moreover, it was shown that the load-deflection curves of these test piles may be normalised in a practical form for an approximate evaluation of pile deflection in a preliminary stage of pile design. At last, a parametric study undertaken on the basis of the proposed PY curves showed the significant influence of the lateral pile/soil stiffness on the non-linear load-deflection response.  相似文献   

16.
Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile and 3 × 3 and 5 × 5 pile groups during open face tunnelling in stiff clay. Several governing factors, such as tunnelling-induced ground and pile settlement, axial pile force changes and shear transfer mechanism at the pile–soil interface, have been studied in detail. Tunnelling resulted in the development of pile head settlement larger than the free-field soil surface settlement. In addition, axial force distributions along the pile change substantially due to changes in the shear transfer between the pile and the soil next to the pile, which triggers tunnelling-induced tensile forces in the piles with tunnel advancement. It was found that the relative displacements and the normal stresses at the pile–soil interface drastically affected shear transfer. The extent of slip length along a pile increased as the tunnelling proceeded. The apparent allowable pile capacity was reduced by up to approximately 42% due to the development of tunnelling-induced pile head settlement. Shear stress on the pile was increased for most of the pile depth with tunnel advancement, which was associated with changes in soil stresses and ground deformation, and hence, the axial pile force was gradually reduced with tunnel advancement, indicating the development of tunnelling-induced tensile pile force. The maximum tunnelling-induced tensile force on the pile was approximately 0.33Pa, where Pa is the allowable pile capacity applied to the pile head prior to tunnel excavation. The range affected by tunnelling in the longitudinal direction may be identified as approximately −2D  +(1.5–2.0D), where D is the tunnel diameter, from the pile centre (behind and ahead of the pile axis), in terms of pile settlement and axial pile force changes based on the analysis conditions assumed in the current study. Larger pile head settlements and smaller changes in axial pile forces were computed for piles that were part of groups. It has been found that the serviceability of piles experiencing adjacent tunnelling is more affected by pile settlement than by axial pile force changes, in particular for piles inside groups. The magnitude of the tunnelling-induced excess pore pressure was small and may not substantially affect pile behaviour.  相似文献   

17.
Sorption of three surfactants and personal care products in four types of commonly occurring Indian soils was extensively studied. The soils used in the study were red soil, clay soil, compost soil and sandy soil as classified by American Society for Testing and Materials (ASTM). The three surfactants used in the study were representative of cationic, non-ionic and anionic surfactant groups. The sorption of surfactants followed the descending order: sodium dodecyl sulphate (SDS) > trimethyl amine (TMA) > propylene glycol (PG). The maximum adsorption capacity (Qmax) was obtained in compost soil (28.6 mg/g for SDS; 9.4 mg/g for TMA and 4 mg/g for PG). The rate of adsorption was the maximum in compost soil followed by clay and red soils, and minimum for sandy soils. It is found that the Freundlich model fits the isotherm data better than the Langmuir model. Freundlich coefficient (K f) increased as the organic content of soils increased. Desorption of target pollutants in tap water was 20–50% whereas acid desorbs 40–90% of target pollutants from soil matrix. It was also found that the adsorption and desorption were significantly affected by the presence of clay and organic matter. The results also indicate that surfactants and personal care products, especially TMA and PG, are highly mobile in sandy soil followed by red soil. Therefore, immobilization of target pollutants is most economical and effective in compost and clayey soils whereas for other type of soils the combination of physiochemical and biological process will be effective option for remediation.  相似文献   

18.
Piles supporting transmission towers, offshore structures (such as wind turbines), or infrastructures in seismic areas are frequently subjected to either one-way or two-way cyclic lateral loadings. Relatively little attention, however, has been paid to compare and understand the effects of different loading regimes (one-way or two-way cycling) on lateral responses of piles in soft clay. For this reason, a series of field tests in soft clay are carried out to compare one-way and two-way cyclic responses of single piles and of jet-grouting reinforced piles. The field tests reveal that the single pile subjected to two-way cycling experiences much more rapid degradation in lateral stiffness and capacity, but accumulates much smaller residual pile deflection (δ p), than the single pile under one-way cycling. This is because the reverse part of the two-way cycling also generates plastic strain, causing additional softening and strength reduction in the soil surrounding the pile. After each cycling, non-zero bending moment (i.e. locked in moment, or M L) is retained in the single piles, and the M L increases with the δ p. The one-way cycling leads to two times larger M L than the two-way cycling, as it causes greater δ p. The maximum M L in the pile after one-way cycling can be up to 40% of the maximum bending moment induced during the previous cyclic loading stage. After application of jet-grouting surrounding the upper part of the single pile, it greatly reduces degradation of lateral pile stiffness, accumulation of δ p and therefore development of M L. Compared to the field measurements, the API (API RP 2A-WSD, recommended practice for planning, designing, and constructing fixed offshore platform-working stress design, 21st edn. API, Washington, 2000) code underestimates the lateral stiffness of the pile under one-way cycling, while overestimates that of the pile under two-way cycling, leading to a non-conservative prediction of bending moment in the latter pile.  相似文献   

19.
The environment prevalent in ocean necessitates the piles supporting offshore structures to be designed against lateral cyclic loading initiated by wave action, which induces deterioration in the strength and stiffness of the pile-soil system introducing progressive reduction in the bearing capacity associated with increased settlement of the pile foundation. A thorough and detailed review of literature indicates that significant works have already been carried out in the relevant field of investigation. It is a well established phenomenon that the variation of relative pile-soil stiffness (K rs ) and load eccentricity (e/D) significantly affect the response of piles subjected to lateral static load. However, the influence of lateral cyclic load on axial response of single pile in sand, more specifically the effect of K rs and e/D on the cyclic behavior, is yet to be investigated. The present work has aimed to bridge up this gap. To carry out numerical analysis (boundary element method), the conventional elastic approach has been used as a guideline with relevant modifications. The model developed has been validated by comparing with available experimental (laboratory model and field tests) results, which indicate the accuracy of the solutions formulated. Thereafter, the methodology is applied successfully to selected parametric studies for understanding the magnitude and pattern of degradation of axial pile capacity induced due to lateral cyclic loading, as well as the influence of K rs and e/D on such degradation.  相似文献   

20.
Effects of sheet flow rate and slope gradient on sediment load   总被引:2,自引:0,他引:2  
Sheet erosion is known as one of the most important forms of erosion, particularly in agricultural land. The purpose of this study was to investigate the effect of flow rate and slope gradient on runoff and sediment discharges in two different soils. Experiments were conducted using a tilting flume facility with the test area of 0.2?×?1.0 m. Overall, 24 experiments on two soils (clay loam and sandy clay loam textures) including six flow rates (75, 100, 125, 150, 175, and 200 ml/s) and two slope gradients (1.5 and 2 %) were performed. The selected flow rates and flume slopes were generated to simulate sheet erosion. The results showed that for both soils and slopes, unit flow discharge (q) and sediment concentration increased with increasing flow rate; however, the effect of slope gradient on flow discharge depends on soil type. In addition, sandy clay loam exhibited higher values of q and sediment concentration and consequently, it showed greater amounts of sediment load. At the start of event, sediment concentration was high but it decreased to approach a steady state. In addition, the time needed to reach a steady state condition was shorter for sandy clay loam than that for clay loam soil and in lower flow rates than higher flow rates. For each soil and slope, there was a direct relationship between sediment load and flow rate. The result implied that the effect of slope gradient on sediment load was almost greater in sandy clay loam soil than clay loam soil. Moreover, the differences between sediment loads of two soils are enlarged at slope 2 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号