首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

2.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   

3.
The metamorphism of upper greenschist facies metasediments exposed in the extreme southwestern portion of St. Jonsjorden, Svalbard, is described. The rocks form part of the Mullerneset Formation of the late Precambrian age Kongsvegen Group and constitute a portion of the central-western Spitsbergen Cale-donides. Four deformations (D, -D4) and two metamorphic episodes (Mi and M2) have affected the rocks of the Mullerneset area. Mi was a prograde event which was initiated prior to the onset of the Di and continued through this deformation. Pre-Dt metamorphism reached biotite grade whereas garnet grade was attained syn-Di. M2 was a lower-middle greenschist facies metamorphism associated with D2. The results of quantitative geothermometry in the pelitic rocks show that peak Mi metamorphic temperatures decrease southwards across the field area from about 540°C to 510°C. Geobarometry and estimates of depth of burial indicate that Mi pressures were in the range of 5–7 kb. The data are consistent with geothermal gradients in the range of 21 ± 4°C/km to 24 ± 5°C/km. M2 metamorphic conditions are not precisely determinable but temperatures and pressures were probably less than those attained during Mi. It is suggested that the rocks of central-western Spitsbergen were originally deposited in an aulacogen before the initiation of Caledonian diastrophism.  相似文献   

4.
Summary. The pole positions obtained from Upper Cretaceous and Eocene tuffs and dykes of the Mesudiye region, which is located between the north of the North Anatolian Fault Zone and eastern Black Sea coast, are at 75.3° N, 275.4° E and 41.7° N, 138.6° E respectively. These results, taken together with the results of previous studies of Turkish rocks, suggest that rotational movements of Turkey have been 45–50° counterclockwise to Europe since the Upper Cretaceous.  相似文献   

5.
Summary. Palaeomagnetic results are reported from 111 localities in meta- morphic rocks from the Southern Zone of the Lewisian Complex and 12 sites from similar terrain on the island of Lewis and Harris. These rocks were magnetized during slow uplift following the ca. 1800 Ma Laxfordian tectonic/ magmatic episode. The Southern Zone experienced diachronous uplift and there is a transition from predominantly positive NW remanence directions in the north to shallow negative NW directions in the south. More prolonged metamorphism in the south correlates with a transition from magnetite/ sulphide to magnetite/hematite assemblages. The relict Ruadh Mheallan zone relatively unaffected by Laxfordian tectonism preserves a (A1) remanence D = 82°, I = 65° which is sporadically recovered as high blocking temperature component in areas bordering this zone. Elsewhere, the migration of field directions is summarized as mean directions (A3) D = 323°, I = 44°, (A4) D = 314°, I = 14° and (A5) D = 313°, I = - 11° which appear to follow on sequentially from the predominant A2 direction ( D = 286°, I = 55°) observed in the Central Zone of the Lewisian Complex. The remanence directions are linked to a first approximation to the K-Ar hornblende ages and imply a migration of the ambient field direction through ca. 110° during an interval between 1 × 107 and 2 × 108× yr at about 1600Ma; the weight of the evidence suggests that the interval represented is between 0.5 and 1 × 108× yr.
The Lewisian A2—A5 directions yield palaeopoles which follow on from 1800–1700 Ma magnetizations from the Hudsonian terrains of Greenland and North America and overlap with the youngest record from these regions on the pre-drift reconstruction; collectively the data define part of a large apw loop.  相似文献   

6.
Summary. A new roadcut has enabled us to sample the south-dipping limb of the Montmartin syncline for a palaeomagnetic reevaluation of an earlier result published by Jones, Van der Voo & Bonhommet. In combination with the results previously published in 1979 for the north-dipping beds of the syncline, a conclusively negative fold test is obtained. The resulting magnetization (declination/inclination =206°/-3°, α95= 12°, palaeopole at 38°S, 325°E) is interpreted to be of Late Carboniferous age, not Late Devonian as thought earlier. Simultaneously, we have re-evaluated the age of the rocks, previously thought to be Late Devonian on the basis of Acritarchs, Chitinozoans and spores. It has not been possible to reconfirm these fossils, not even in the same samples as studied originally; in contrast, the regional presence of Early Palaeozoic fossils suggests to us an age similar to that of other red beds in the Arrnorican Massif, which have been dated as Early Ordovician. The geodynamic implications of our finding that the Montmartin rocks are completely remagnetized, however, are of no great consequence for the geodynamics of the Hercynian belt. Pre-folding magnetization obtained from Silurian and Devonian rocks in Spain and Germany argue for the same conclusion as reached erroneously in our earlier study, namely that the Armorican Massif and adjacent parts of Hercynian Europe were adjointed to North America, Great Britain, the Baltic Shield and the Russian Platform since at least Late Devonian time. If a Medio-European ocean existed during the Palaeozoic, it was virtually closed before the mid-Devonian and of insignificant width during Culm deposition in Early Carboniferoirs time.  相似文献   

7.
Rocks from the Massif de la Serre in the French Jura (latitude: 47.3°N longitude: 5.6°E) belonging to an ignimbritic assemblage dominated by vitrophyric rhyolites, and whose age of formation is probably Permian (Autunian to Saxonian) have been studied by applying thermal and alternating field demagnetization. the characteristic magnetization has a mean direction derived from 89 samples of D= 170°, I = - 16°, k = 26.2°, α95= 3° and a corresponding north palaeopole at 41°N, 172°E, A 95= 5°. the pole, which is very close to the Permian European poles, can thus be considered as a new contribution. Some samples are found to carry a unique normal polarity magnetization, others carry both normal and reverse polarities. It therefore seems that, similar to Permian series in the USSR, these west European rocks have registered a normal event in the Kiaman interval. From a structural point of view, we may conclude that during the Alpine tectonic phases the Massif de la Serre has not been subjected to substantial rotation.  相似文献   

8.
Summary. Palaeomagnetic data from 71 hand samples of igneous rocks of Late Ordovician age exposed in western Argentina (31.3°S, 69.4°W, Alcaparrosa Formation) are given. Stable remanent magnetization was isolated in the majority of samples; they yield a palaeomagnetic pole at 56°S 33°E ( N = 8, α95= 16°). Whole rock K-Ar age determinations yield an age of 416 ± 10 Myr for a pillow lava of the Alcaparrosa Formation.
Palaeomagnetic data for South America, Africa, Australia, Antarctica and India suggest that Gondwana was a unit at least as far back as 1000 Myr. The palaeomagnetic data define a rapid polar migration for Gondwana in Ordovician time which is consistent with the widespread occurrences of Late Ordovician glacial deposits across this supercontinent.  相似文献   

9.
Continental red sandstone and siltstone rocks of the Dewey Lake (Quartermaster) Formation at Maroon Cliffs, near Carlsbad, New Mexico, are characterized by two components of magnetization with partially overlapping laboratory unblocking temperature spectra. Both magnetizations display high coercivities (>100 mT), probably residing in haematite. A north-directed magnetization with steep positive inclination unblocks between 100 and 650 °C, isolating a predominantly northwest-directed magnetization, with shallow inclination, of near uniform normal polarity and maximum unblocking temperatures of 680 °C.
We collected samples from 24 palaeomagnetic sites (i.e. individual beds) from a ~60 m thick section of flat-lying strata disconformably overlying carbonate and evaporite rocks of the Rustler Formation. The upper member of the Rustler Formation contains a Late Permian (early Changxingian) marine invertebrate and conodont fauna. Of the sampled sites, four yield only steep magnetizations, interpreted to be recent overprints. Eight sites did not yield well-grouped site means and were excluded from the final calculations. The formation mean (dec = 337.7°, inc = 9.2°; k = 31.6, α 95 = 7.8°, N = 12 sites) defines a palaeomagnetic pole located at 55.2°N, 117.5°E, in good agreement with other Late Permian North American cratonic poles.
Correlation of the short polarity sequence of this section of Dewey Lake strata is unambiguous. Compared with the polarity stratigraphy of marine sections in Asia, and supported by isotopic age determinations on a widespread bentonite bed in Dewey Lake strata in west Texas (approximately 251 Ma) and fossil data for the underlying Rustler Formation, the magnetostratigraphy is consistent with deposition of the Dewey Lake Formation during the latest Changxingian (Late Permian) stage.  相似文献   

10.
Summary. In this paper we present palaeomagnetic data from 87 hand samples collected in a sequence of tuffs and shales (Surf Formation) of Llanvirnian age, exposed in north-western Argentina (27° 47' S, 68° 06' W). After cleaning, the majority of samples showed reversed polarity and yielded a palaeomagnetic pole at 5.9° E, 8.5° S (α95= 5.9°). They also showed reversals of declination and inclination at the top of the sequence, which we have associated with geomagnetic excursions. Whole rock K—Ar age de-terminations suggest an age older than 416 ± 25 Myr for the Suri rocks. The predominant reversed stable remanence of these rocks is consistent with the reversed polarity reported for Early Llanvirnian rocks from USSR. The palaeomagnetic pole for the Suri Formation is consistent with the interpretation that Gondwana was a single unit in Early Palaeozoic times.
Palaeomagnetic data from 27 hand samples collected from 10 igneous units of Late Silurian—Early Devonian age (Ñuñorco Formation), exposed in the same area, are also given. The majority of the igneous units showed reversed polarity after cleaning. The positions of VGP's for the Ñuñorco igneous units are scattered and they are not used for geodynamic interpretations. Whole rock K—Ar age determinations suggest ages of 416 ± 25 and 360 ± 10 Myr for two igneous units of the Ñuñorco Formation.  相似文献   

11.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

12.
Summary. Multichannel seismic reflection sections recorded across Vancouver Island have revealed two extensive zones of deep seismic reflections that dip gently to the northeast, and a number of moderate northeasterly dipping reflections that can be traced to the surface where major faults are exposed. Based on an integrated interpretation of these data with information from gravity, heat flow, seismicity, seismic refraction, magnetotelluric and geological studies it is concluded that the lower zone of gently dipping reflections is due to underplated oceanic sediments and igneous rocks associated with the current subduction of the Juan de Fuca plate, and that the upper zone represents a similar sequence of accreted rocks associated with an earlier episode of subduction. The high density/high velocity material between the two reflection zones is either an underplated slab of oceanic lithosphere or an imbricated package of mafic rocks. Reprocessing of data from two of the seismic lines has produced a remarkable image of the terrane bounding Leech River fault, with its dip undulating from >60° near the surface to 20° at 3 km depth and ∼38° at 6 km depth.  相似文献   

13.
Summary. Piper suggested that the Lewisian has rotated 30° anticlockwise since magnetization, whereas the opposite appears more likely. The main magnetization in the Lewisian recognized by Piper and Beckmann was imposed upon cooling after the Laxfordian metamorphism at about 1750 (± 50) Ma. The palaeomagnetic pole corresponding to this magnetization is at 37.6° N, 273.2° E ( dp = 3.7°, dm = 5.2°).
In Greenland, palaeomagnetic poles similar to each other, with a mean pole at 21.6° N, 280.1° E ( K = 52, A 95= 9.4°), have been determined from five widely separated regions in central West Greenland and from Angmags-salik in East Greenland. The magnetization observed in all these regions was established upon cooling after the Nagssugtoqidian metamorphism, again at about 1750 (± 50) Ma.
The Laxfordian and Nagssugtoqidian metamorphisms were equivalent. It is therefore assumed that the two palaeomagnetic poles quoted above were originally identical. Their present difference can be explained by clockwise rotation of north-west Scotland about a local rotation pole since the Lewisian became magnetized, in addition to opening of the Atlantic assuming conventional reconstructions:
(1) assuming the reconstruction of Bullard, Everett & Smith, the local rotation proposed is 39.5° (± 18.1°) about a pole of rotation at 60.3° N, 354.5° E, or
(2) assuming the reconstruction of Le Pichon, Sibuet & Francheteau, the local rotation is 28.0° (±17.7°) about a pole of rotation at 54.1° N, 354.6° E.
These proposals of local clockwise rotation of north-west Scotland accord with that of Storetvedt based on palaeomagnetic results from Devonian rocks on the north-west side of the Great Glen Fault.  相似文献   

14.
A total of 239 orientated drill-core samples from 23 sites were collected for palaeomagnetic study from Silurian and Devonian red beds, marlaceous sandstone, and limestone rocks in the eastern part of the Hexi Corridor, southwest Ningxia, North China. The characteristic high-temperature component resides in both haematite and magnetite. It clusters around a northwesterly and shallow to moderate downward direction and its antipode after tilt correction. The primary origin of this characteristic remanent magnetization (ChRM) is ascertained by positive fold and reversal tests at the 95 per cent confidence level. The corresponding palaeopoles, at 339.0°E, 60.1°N with A 95 = 11.2° (Silurian) and 336.0°E, 56.0°N with A 95 = 9.2° (Devonian), imply that the North China Block (NCB) had a low palaeolatitude of around 15°N in the Northern Hemisphere during the Silurian–Devonian period. Comparison with the Early–Middle Ordovician palaeopole of the NCB suggests that the NCB moved rapidly northwards by 30.8° ± 10.9° to cross the palaeo-equator during the Early–Middle Ordovician to Silurian. In combination with the palaeobiogeographical data from Ningxia, our palaeomagnetic results suggest that the NCB was located close to Australia during the Late Devonian.  相似文献   

15.
Summary. The Cordova gabbro of southern Ontario intrudes 1300 Myr old volcanic rocks of the Hastings Lowlands in the Grenville Structural Province. Three distinct vector magnetizations (A, B and C) have been isolated, using a combination of stable endpoints, subtracted vectors from orthogonal vector plots and converging remagnetization circles. The A magnetization, with mean direction D = 294° I =– 55.5° ( k = 42, α95= 5.5°, N = 18 sites), is a high coercivity, high blocking temperature remanence recorded by 49 samples. The B magnetization was isolated in 33 samples and has a mean direction D = 305.5° I =– 1.5° ( k = 24, α95, N = 11 sites). B has lower coercivities and blocking temperatures than A where the two are superimposed. The A and B palaeopoles, 151°E, 10.5°S ( dp = 6°, dm = 8°) and 165.5°E, 24°N ( dp = 5°, dm = 9.5°), fall on the Grenville Track around 900 and 820 Ma respectively. The A and B magnetizations thus date from uplift and cooling following the Grenvillian orogeny. The third magnetization, the C component, has been isolated in 23 samples. Its mean direction is D = 180° I = 27.5° ( k = 18, α95= 10.5°, N = 12 sites). The C is a low coercivity, low blocking temperature overprint of A and B. Its palaeopole, 102°E, 31°N ( dp = 6.5°, dm = 12°), is unlike post-1300 Precambrian poles for cratonic North America but matches Silurian and late Ordovician poles. 40Ar/39Ar plateau ages of 446 and 447 Ma determined by Lopez-Martinez and York for plagioclases from one of the Cordova samples confirm this age assignment. The C magnetization therefore records a previously unrecognized mild thermal or hydrothermal event that occurred in Palaeozoic time, long after the Grenvillian orogeny.  相似文献   

16.
Summary. The Upper Mesozoic section from Northern Tunisia provided an Upper Jurassic palaeomagnetic pole of 65.2°S 20.3°E α95= 6.1 calculated from the means of normal and reversely magnetized samples from the uppermost Callovian, Oxfordian, Kimmeridgian and Portlandian rocks. In general the only Cretaceous rocks to yield acceptable results were the few samples collected from fresh outcrops.
A polarity sequence can be established for the Upper Jurassic which can be correlated with the oceanic Keathley anomaly sequence. One consequence of the proposed correlation of the oceanic anomaly with the terrestrial palaeomagnetic sequence is to suggest a slightly different age for the Oxfordian-Kimmeridgian boundary. One interpretation of the frequent intermediate directions of magnetization in the Cretaceous sequence is that there may be a number of unrecognized short period reversals within the Cretaceous and, more particularly, during the so-called Cretaceous normal period.  相似文献   

17.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

18.
A palaeomagnetic investigation has been carried out of rocks from the eastern part of the Voronezh Massif, which constitutes, together with the Ukrainian Shield, the Sarmatian segment in the southern part of the East European Craton. The samples were collected in a quarry close to the town of Pavlovsk (50.4°N, 40.1°E), where a syenitic-granitic body intrudes Archaean units. U–Pb (zircon) dating has yielded an age of 2080  Ma for the intrusion.
  Two characteristic magnetic components, A and B, were isolated by thermal and alternating-field demagnetization. Component A was obtained from granites and quartz syenites (11 samples) and has a mean direction of D = 229°, I = 28°, and a pole position at 12°N, 172°E. This pole is close to a contemporary mean pole (9°N, 187°E) for the Ukrainian Shield, which implies that the Voronezh Massif and the Shield constituted a single entity at 2.06  Ga. These poles differ from contemporaneous poles of the Fennoscandian Shield, indicating that the relative positions of the two shields were different from their present configuration about 2100  Myr ago.
  A component B, isolated only in quartz monzonites (five samples), has a mean direction D = 144°, I = 49°, and a pole position at 4°N, 251°E, which is close to late Sveconorwegian (approximately 900  Ma) poles for Baltica. This suggests that the East European Craton was consolidated some time between 2080 and 900  Ma. Comparison with other palaeomagnetic data permit us to narrow this time span to 1770–1340  Ma.  相似文献   

19.
Summary. Two late Mesozoic dolerite sills, situated near Agardhbukta on the east coast of Vestspitsbergen and dated radiométrically at 100 ± 4 Myr BP, have been sampled in five localities and subjected to detailed mineralogical and rock magnetic studies to determine the direction and origin of their magnetization. Although the sills lie outside the Tertiary orogenic belt, one locality (no. 4) has undergone strong hydrothermal alteration and a small part of another locality (no. 3) has also been affected. A conventional procedure based on examination of Zijderveld diagrams, applied to specimens demagnetized by alternating fields and thermally, yielded similar remanence directions at all five localities, except at the altered part of locality 3. Using a least squares computer méthod of analysis of step demagnetization data, comparable directions were isolated from all localities, including the altered part of locality 3. Except in this last case, all directions were reversed. The adjusted mean direction obtained from this analysis is D = 159.0°, I = 62.2°, α95= 9.0° yielding a palaeomagnetic pole situated at 225.0°, 54.3°N comparable with pole positions obtained from other late Mesozoic igneous rocks on Spitsbergen and distinct from palaeopoles derived from Mesozoic rocks in North America and Eurasia. This suggests that during the late Mesozoic Svalbard existed as a semi-independent microplate.  相似文献   

20.
A continental sequence of red beds and interbedded basaltic layers crops out in the Sierra Chica of Córdoba Province, Argentina (31.5°S, 64.4°W). This succession was deposited in a half-graben basin during the Early Cretaceous. We have carried out a palaeomagnetic survey on outcrops of this basin (147 sites in seven localities). From an analysis of IRM acquisition curves and detailed demagnetization behaviour, three different magnetic components are identified in the volcanic rocks: components A, B and X are carried by single- or pseudo-single-domain (titano) magnetite, haematite and multidomain magnetite, respectively. Component A is interpreted as a primary component of magnetization because it passes conglomerate, contact, tilt and reversal tests. The carrier of the primary magnetization, fine-grained (titano)magnetite, is present in basalts with a high degree of deuteric oxidation. This kind of oxidation is interpreted to have occurred during cooling. Components B and X are discarded because they are interpreted as recent magnetizations. In the sedimentary rocks, haematite and magnetite are identified as the carriers of remanence. Both minerals carry the same component, which passes a reversal test. The calculated palaeomagnetic pole, based on 55 sites, is Lat. 86.0°S, Long. 75.9°E ( A 95=3.3, K =35). This palaeomagnetic pole supersedes four with anomalous positions reported in previous papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号