首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensitivity of seismic waves to structure   总被引:2,自引:0,他引:2  
We study how the perturbations of a generally heterogeneous isotropic or anisotropic structure manifest themselves in the wavefield, and which perturbations can be detected within a limited aperture and a limited frequency band. A short-duration broad-band incident wavefield with a smooth frequency spectrum is considered. In-finitesimally small perturbations of elastic moduli and density are decomposed into Gabor functions. The wavefield scattered by the perturbations is then composed of waves scattered by the individual Gabor functions. The scattered waves are estimated using the first-order Born approximation with the paraxial ray approximation. For each incident wave, each Gabor function generates at most 5 scattered waves, propagating in specific directions and having specific polarisations. A Gabor function corresponding to a low wavenumber may generate a single broad-band unconverted wave scattered in forward or narrow-angle directions. A Gabor function corresponding to a high wavenumber usually generates 0 to 5 narrow-band Gaussian packets scattered in wide angles, but may also occasionally generate a narrow-band P to S or S to P converted Gaussian packet scattered in a forward direction, or a broad-band S to P (and even S to S in a strongly anisotropic background) converted wave scattered in wide angles. In this paper, we concentrate on the Gaussian packets caused by narrow-band scattering. For a particular source, each Gaussian packet scattered by a Gabor function at a given spatial location is sensitive to just a single linear combination of 22 values of the elastic moduli and density corresponding to the Gabor function. This information about the Gabor function is lost if the scattered wave does not fall into the aperture covered by the receivers and into the legible frequency band.  相似文献   

2.
This study investigates the dynamic interaction of time harmonic plane waves with a pair of parallel circular cylindrical cavities of infinite length buried in a boundless porous elastic fluid-saturated medium. The novel features of Biot dynamic theory of poroelasticity along with the appropriate wave field expansions, the pertinent boundary conditions, and the translational addition theorems for cylindrical wave functions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with numerical examples in which two empty cavities are insonified by a fast compressional or a shear wave at end-on incidence. The basic dynamic field quantities such as the hoop stress amplitude and the radial displacement of the elastic frame are evaluated and discussed for representative values of the parameters characterizing the system. The effects of the proximity of the two cavities, the incident wave frequency and type are examined. Particular attention has been focused on multiple scattering interactions in addition to the slow wave coupling effects which is known to be the primary distinction of the scattering phenomenon in poroelasticity from the classical elastic case. Limiting case involving two empty cylindrical cavities in an elastic solid is considered and excellent agreement with a well-known solution is established.  相似文献   

3.
随机弹性介质中地震波散射衰减分析(英文)   总被引:2,自引:0,他引:2  
地震波衰减一直是许多学科研究的热点,因为可以反映介质的特性。导致地震波衰减的因素很多,如:传播过程中由于能量扩散导致的几何衰减,固体岩石内部晶粒间相对滑移导致的摩擦衰减,岩石结构不均匀引起的地震波散射衰减。本文主要从统计的观点出发,通过多次数值模拟的方法研究纵波散射在随机弹性介质中所引发的衰减。首先用随机理论建立了二维空间随机弹性介质模型,然后用错格伪谱法的数值方法模拟了波在随机介质中的传播,再通过波场中虚拟检波器的记录,用谱比法估计了弹性波在随机介质中的散射衰减。不同非均匀程度随机弹性介质中的数值结果表明:介质不均匀程度越高,散射衰减越大;在散射体尺寸小于波长的前提下,不同散射体尺寸的计算结果说明:散射体尺寸越大,弹性波衰减越明显。最后提出了一种不均匀孔隙介质中流体流动衰减的方法。通过对随机孔隙介质中地震波的总衰减和散射衰减分别进行了计算,并定量得出了随机孔隙介质中流体流动衰减,结果表明:在实际地震频段下,当介质不均匀尺度101米量级时,散射衰减比流体流动衰减要大,散射衰减是地震波在实际不均匀岩石孔隙介质中衰减的主要原因。  相似文献   

4.
We review the application of the discrete wave number method to problems of scattering of seismic waves formulated in terms of boundary integral equation and boundary element methods. The approach is based on the representation of the diffracting surfaces and interfaces of the medium by surface distributions of sources or by boundary source elements, the radiation from which is equivalent to the scattered wave field produced by the diffracting boundaries. The Green's functions are evaluated by the discrete wave number method, and the boundary conditions yield a linear system of equations. The inversion of this system allows the calculation of the full wave field in the medium. We investigate the accuracy of the method and we present applications to the simulation of surface seismic surveys, to the diffraction of elastic waves by fractures, to regional crustal wave propagation and to topographic scattering.  相似文献   

5.
In this study, a new model is developed for the aseismic design of a periodic viaduct when the pile–soil–structure interaction is considered. To account for the influence of the pile–soil–structure interaction, a wavenumber domain boundary element method (WDBEM) model for the periodic pile row supporting the viaduct is developed using the sequence Fourier transform as well as the boundary element method for the elastic medium. By using the WDBEM model for the pile row, the transfer matrices for the beams and piers, the joint conditions at the beam–beam–pier (BBP) junction as well as the periodicity condition for the viaduct, the wavenumber domain response of the periodic viaduct to spatially harmonic waves is determined. Based on the wavenumber domain response of the viaduct, the space-domain response of the viaduct to an arbitrary seismic wave can be obtained by invoking the inverse sequence Fourier transform method. Numerical results show that when the periodic viaduct is exposed to the spatially harmonic wave, resonances may occur at the bounding frequencies of the passbands of the characteristic waves of the viaduct. Also, it is found that the coincidence between the traveling seismic wave and characteristic waves of the viaduct will generate additional resonant frequencies located in passbands of the characteristic waves.  相似文献   

6.
基于常规弹性波动方程的反射波走时反演结合走时和反射波信息可以有效的摄取模型参数中的低波数成分,然而纵横波之间的耦合效应以及纵横波速度对波场的敏感性差异,导致反演的非线性问题增强.为此本文研究了基于解耦波动方程的反射波走时反演,并提出改进的时移互相关目标函数,分别隐式计入射波场快照与反传波场快照的时移量,很大程度的降低了纵波、横波之间的耦合关系,并提高纵横波速度低波数信息的反演质量.最后模型测试证明了本文方法的正确性.  相似文献   

7.
为揭示地震波在地壳小尺度非均匀介质中的散射过程,更准确地描述地震波的包络展宽现象,本文基于多次各向异性散射理论,采用离散波数法求解能量密度积分方程,选取高斯型自相关函数表征的散射模式,得到S波能量密度包络。基于此,本文首先分析了单次散射和多次散射在形成S波能量密度包络中的贡献规律;然后探讨了吸收系数和总散射系数对合成S波能量密度包络的影响;最后对比了在不同散射模式下合成的S波能量密度包络的差异。结果显示:① 不同的散射模式下单次散射和多次散射对地震波散射过程的贡献规律是一致的,对于近震(震源距小于100 km),单次散射模型可以近似合成S波能量密度包络;随着震源距增大,多次前散射模型可以更快地接近总能量密度包络;② 吸收系数增大会降低直达S波和尾波幅值,总散射系数增大会降低直达S波幅值,但使得S波尾波幅值升高;③ 前散射模式下S波能量密度包络随震源距的增大会导致峰值延迟,包络展宽,尾波衰减一致性更快等现象产生。   相似文献   

8.
Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are introduced to solve scattering by an arbitrary cavity for the Helmholtz equation with variable coefficient through the transformed standard Helmholtz equation with a circular cavity. The medium density depends on the distance from the origin with a power-law variation and the shear elastic modulus is constant. The complex-value displacements and stresses of the inhomogeneous medium are explicitly obtained and the distributions of the dynamic stress for the case of an elliptical cavity are discussed. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Numerical results demonstrate that the wave number, inhomogeneous parameters and different values of aspect ratio have significant influence on the dynamic stress concentration factors around the elliptical cavity.  相似文献   

9.
Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is considered and solutions are developed in terms of the spherical vector system of Petrashen, which produces results in terms of displacements rather than displacement potentials and in a form suitable for accurate numerical computations. Analytical expressions for canonical scattering coefficients are obtained for both the cases of incidentP waves and incidentS waves. Calculations of energy flux in the scattered waves lead to elastic optical theorems for bothP andS waves, which relate the scattering cross sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with scattering cross sections that demonstrate important differences between these types of obstacles. A general result is that the frequency dependence of the scattering is defined by the wavelength of the scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that the intensity of thePS scattering is generally much stronger than theSP scattering. When averaged over all scattering angles, the mean intensity of thePS converted waves is2V p 2 /V s 4 times the mean intensity of theSP converted waves, and this ratio is independent of frequency. The exact solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh) approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the result that an increase in attenuation within the inclusion causes an increased scattering cross section with a marked preference for scatteredS waves. The complete generality of the results is demonstrated by showing waves scattered by the earth's core in the time domain, an example of high-frequency scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves.  相似文献   

10.
双相介质中地震波衰减的物理机制   总被引:1,自引:0,他引:1  
High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.  相似文献   

11.
A new technique relates the wave velocity of the surface waves in anisotropic elastic medium to its elastic constants. Anisotropic propagation of surface waves is studied in a half-space occupied by a general anisotropic elastic solid. The phase velocity expressions of quasi-waves, in three-dimensional space, are used to derive the secular equation of surface waves. The complex secular equation is resolved, analytically, into real and imaginary parts and is then solved, numerically, for phase velocity along a given phase direction on the surface. The complete procedure is thus analogous to the one used for conventional Rayleigh waves in isotropic medium. A non-linear equation relates the ray direction of the surface waves to its phase direction on the (plane) surface of the medium. The analytical differentiation of secular equation yields the directional derivative of phase velocity. This derivative is used to calculate the wave velocity of surface waves. Spatial variations of phase velocity, wave velocity and ray direction over the free plane surface are plotted for the numerical models of crustal rocks with orthorhombic, monoclinic and triclinic anisotropies.  相似文献   

12.
The application of standard array processing techniques to the study of coda presents difficulties due to the design criteria of these techniques. Typically the techniques are designed to analyze isolated, short arrivals with definite phase velocity and azimuth and have been useful in the frequency range around 1 Hz. Coda is long in time and may contain waves of different types, phase velocities and azimuths. Nonetheless, it has proved possible to use or adapt array methods to answer two questions: what types of waves are present in coda and where are they scattered? Most work has been carried out on teleseismicP coda; work on local coda has lagged due to lack of suitable data and the difficulties of dealing with high frequencies. The time domain methods of beamforming and Vespagram analysis have shown that there is coherent energy with a high phase velocity comparable toP orPP in teleseismicP coda. These methods can detect this “coherent” coda because it has a fairly definite phase velocity and the same, or close to, azimuth as firstP orPP. This component must consist ofP waves and is either scattered near the source, or reflected in the mantle path as apdpP or precursorPP reflection. The Fourier transform method of the frequency-wavenumber spectrum has been adapted by integrating around circles of constant phase velocity (constant total wavenumber) to produce the wavenumber spectrum, which shows power as a function of wavenumber, or phase velocity. For teleseismicP coda, wavenumber spectra demonstrate that there is a “diffuse” coda of shear,Lg or surface waves scattered from teleseismicP near the receiver. Wavenumber spectra also suggest that the coherent coda is produced by near-source scattering in the crust, not mantle reflection, since it is absent or weak for deep-focus events. Crustal earthquakes have a very strong coherent component of teleseismic coda, suggesting scattering from shear to teleseismicP near the source. Three-component analysis of single-station data has shown the presence of off-azimuth arrivals and may lead to the identification of waves scattered from a single scatterer.  相似文献   

13.
多道瞬态瑞雷波技术在公路采空塌陷区探测中应用   总被引:2,自引:1,他引:1       下载免费PDF全文
地下采空塌陷区岩体结构具有明显的结构不连续、松散、断裂、空洞等异常结构特征,本文在分析公路采空塌陷区地球物理场特征的基础上,详细讨论了应用多道瞬态瑞雷波技术探测采空塌陷区的可行性以及相关技术,深入分析基于瑞雷波波场特征、频谱结构、能量衰减、频散特征、相速度以及多阶模等特征探测和评价地层结构的均匀性、地下空洞及异常结构体等地下障碍物的存在及其空间分布的解释标志.滚动式多道瑞雷波探测技术可以有效地探测地下采空区、软弱结构体等异常结构体的赋存状态及空间分布.  相似文献   

14.
本文提出了一种弹性波一次散射波场的正演方法——弹性波高斯束Born正演.该方法以线性散射理论为基础,通过Born近似建立起地下散射点处不同波型的反射率同弹性波主分量波场之间的数据映射关系,利用高斯束所包含的走时、振幅和极性信息进行不同波型的局部平面波的合成,进而通过逆倾斜叠加将所合成的局部平面波转化为时空域的多分量地震记录.该方法不但保持了射线类方法高效的优点,还具备了处理多次走时波场的能力,从而保证了复杂构造的波场模拟的精度.文中两个数值模型的应用效果表明,本文所提出的弹性波高斯束Born正演算法具有近似于波动方程有限差分法的波场模拟精度以及高得多的计算效率.  相似文献   

15.
饱和土中深埋圆柱形衬砌洞室对瞬态平面波的散射   总被引:1,自引:0,他引:1       下载免费PDF全文
基于Biot饱和多孔介质动力学理论,运用Laplace变换和波函数展开法,根据饱和土体与衬砌结构交界面的连续条件和衬砌结构内边界上的应力自由条件,得到饱和土中深埋圆柱形衬砌洞室对瞬态平面P波和SV波散射问题的解答,该解答可以退化成为饱和土中深埋圆柱形空穴或弹性夹塞物的情形,并很容易转换成为对稳态波散射的解.通过与已有的相关问题的解析解答进行对比,验证了该解答的正确性.同时利用Laplace逆变换的数值方法,给出了饱和土和衬砌中应力和位移场在时域内的数值解,通过算例,分析了衬砌厚度、刚度对衬砌内边界处应力集中因子的影响.  相似文献   

16.
The goal of wave‐mode separation and wave‐vector decomposition is to separate a full elastic wavefield into three wavefields with each corresponding to a different wave mode. This allows elastic reverse‐time migration to handle each wave mode independently. Several of the previously proposed methods to accomplish this task require the knowledge of the polarisation vectors of all three wave modes in a given anisotropic medium. We propose a wave‐vector decomposition method where the wavefield is decomposed in the wavenumber domain via the analytical decomposition operator with improved computational efficiency using low‐rank approximations. The method is applicable for general heterogeneous anisotropic media. To apply the proposed method in low‐symmetry anisotropic media such as orthorhombic, monoclinic, and triclinic, we define the two S modes by sorting them based on their phase velocities (S1 and S2), which are defined everywhere except at the singularities. The singularities can be located using an analytical condition derived from the exact phase‐velocity expressions for S waves. This condition defines a weight function, which can be applied to attenuate the planar artefacts caused by the local discontinuity of polarisation vectors at the singularities. The amplitude information lost because of weighting can be recovered using the technique of local signal–noise orthogonalisation. Numerical examples show that the proposed approach provides an effective decomposition method for all wave modes in heterogeneous, strongly anisotropic media.  相似文献   

17.
三维散射算子及其在逆散射中的应用   总被引:1,自引:3,他引:1  
以弹性波为重点,评述了三锥散射算子关系及其在逆散射中的应用。为便于理解,在介绍过程中,还仔细描述一维球对称情况下散射矩阵和逆散射方程推导。本文表明,无论在一维球对称介质情形,还是三维情形(包括声波、电磁波和弹性波),其因果场、反因果场和散射数据之间都存在一个关系,即散射算子关系。如果利用因果场与反因果场之间的时间反转关系,可以得到因果场与散射数据之间的关系或方程。再引进三种场的分解方法,可以得到三种关于因果场的方程,这就是逆散射方程。这些方程分别提出了新的问题。  相似文献   

18.
ABSTRACT

A hydro-elastic frame has been considered to investigate the proliferation of waves over small base deformation on an infinitely extended flexible seabed. The flexible base surface is assumed as a thin elastic plate of very small thickness and it depends on the Euler–Bernoulli beam equation. For any particular frequency, there are two different modes of time-harmonic propagating wave exists rather than one mode of propagating wave along the positive horizontal direction. The waves with smaller wavenumber spread along the free-surface of the sea (say, free-surface mode) and the waves with higher wavenumber spread along the flexible base surface (say, flexural mode). A simplified perturbation approach is utilised to bring down the entire equations which govern the original boundary value problem (bvp) to a less complex bvp for the first-order velocity potential function. The first-order potential function along with the first-order reflection and transmission coefficients for both modes are calculated by a procedure based upon Fourier transform approach. A shape of sinusoidal swells flexible base surface is taken as an example to approve the scientific results. It is observed that when the train of normal incident propagating wave spreads over base distortion because of either the free-surface unsettling influence or the flexural wave movement in the sea, the reflected and transmitted energy are always feasible to be exchanged from one particular wave mode to another wave mode. Furthermore, we notice that the realistic changes in the flexural rigidity behaviour on the flexible base surface of the sea have a significant effect on the problem of water wave proliferation over small base deformation. Moreover, the energy conservation equation is derived with the help of the Green's integral theorem. The results for the values of reflection and transmission coefficients obtained for both the free-surface unsettling influence as well as flexural wave movement in the fluid are found to satisfy the energy conservation equation almost accurately.  相似文献   

19.
目前完全弹性介质中面波频散特征的研究已较为完善,多道面波分析技术(MASW)在近地表勘探领域也取得了较好的效果,但黏弹介质中面波的频散特征研究依然较少.本文基于解析函数零点求解技术,给出了完全弹性、常Q黏弹和Kelvin-Voigt黏弹层状介质中勒夫波频散特征方程的统一求解方法.对于每个待计算频率,首先根据传递矩阵理论得到勒夫波复频散函数及其偏导的解析递推式,然后在复相速度平面上利用矩形围道积分和牛顿恒等式将勒夫波频散特征复数方程的求根问题转化为等价的连带多项式求解问题,最后通过求解该连带多项式的零点得到多模式勒夫波频散曲线与衰减系数曲线.总结了地层速度随深度递增和夹低速层条件下勒夫波频散特征根在复相速度平面上的运动规律和差异.证明了频散曲线交叉现象在复相速度平面上表现为:随频率增加,某个模式特征根的移动轨迹跨越了另一个模式特征根所在的圆,并给出了这个圆的解析表达式.研究还表明,常Q黏弹地层中的基阶模式勒夫波衰减程度随频率近似线性增加,而Kelvin-Voigt黏弹地层中的基阶模式勒夫波衰减程度随频率近似指数增加,且所有模式总体衰减程度强于常Q黏弹地层中的情况.  相似文献   

20.
There are several important wavenumber sampling issues associated with 2.5D seismic modelling in the frequency domain, which need careful attention if accurate results are to be obtained. At certain critical wavenumbers there exist rapid disruptions in the mainly smooth oscillatory spectra. The amplitudes of these disruptions can be very large, and this affects the accuracy of the inverse Fourier transformed frequency-space domain solution. In anisotropic elastic media there are critical wavenumbers associated with each wave mode—the quasi-P (qP) wave, and the two quasi-shear (qS1 and qS2) waves. A small wavenumber sampling interval is desirable in order to capture the highly oscillatory nature of the wavenumber spectrum, especially at increasing distance from the source. Obviously a small wavenumber sampling interval adds greatly to the computational effort because a 2D problem must be solved for every wavenumber and every frequency. The discretisation should be carried out up to some maximum wavenumber, beyond which the field becomes evanescent (exponentially decaying or diffusive). For receivers close to the source, activity persists beyond the critical wavenumber associated with the minimum shear wave velocity in the model. Fortunately, for receivers well removed from the source, the contribution from the evanescent energy is negligible and so there is no need to sample beyond this critical wavenumber. Sampling at Gauss–Legendre spacings is a satisfactory approach for acoustic media, but it is not practical in elastic media due to the difficulty of partitioning the integration around the different critical wavenumbers. We found to our surprise that in transversely isotropic media, the critical wavenumbers are independent of wave direction, but always occur at those wavenumbers corresponding to the maximum phase velocities of the three wave modes (qP, qS1 and qS2), which depend only on the elastic constants and the density. Additionally, we have observed that intermediate layers between source and receiver can filter out to a large degree, the sharp irregularities around the critical wavenumbers in the ω–k y spectra. We have found that, using the spectral element method, the singularities (poles) at the critical wavenumbers which exist with analytic solutions, do not arise. However, the troublesome spike-like behaviour still occurs and can be damped out without distorting the spectrum elsewhere, through the introduction of slight attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号