首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The interpretation of airborne VLF data represents an important aspect of geophysical mapping of the upper few hundred meters of the Earth's crust, especially in areas with crystalline rocks. We have examined the ability of the single frequency VLF method to provide quantitative subsurface resistivity information using two generic models and standard airborne parameters with a flight altitude of 70 m and a frequency of 16 kHz. The models are long thin conductor (10 m thick, 10 Ω m resistivity and 1 km long) and a wider buried conductive dike (100 Ω m resistivity and 500 m wide). Using standard regularized inversion it turned out that for both models the conductivity of the conductors are underestimated and the vertical resolution is rather poor. The lateral positions of the minimum of the resistivity distributions coincide well with the true positions of the shallow conductors. For deeper conductors the position of the minimum resistivity moves from the edges of the conductor into the conductor. The depth to the minimum of the resistivity anomalies correlates well with the true depth to the top of the conductors although the latter is always smaller than the former.Interpretation of field airborne data collected at 70 m flight height resolved both small scale and large scale near surface conductors (conductance ∼1 S). Deeper conductors show up in the VLF data as very long wavelength anomalies that are particularly powerful in delineating the lateral boundaries of the conductors. Many of the VLF anomalies in the Stockholm area are dominated by these deep conductor responses with some near surface conductors superimposed. The deep conductors often follow topographic lows coinciding with metasediments. We interpret the frequent absence of near surface responses at 70 m flight height as a result of weak coupling between the primary VLF wave and the small scale (in all three dimensions) near-surface conductors.Radio magnetotelluric (RMT) ground measurements were carried out along a short profile coinciding with part of an airborne profile. Using data at 9 frequencies (14–250 kHz) small scale conductors in the upper few tens of meters, not identified from the airborne data, could be well resolved. Large scale deeper conductors could be identified by both methods at nearly the same positions.  相似文献   

2.
Resistivity investigations were carried out on an elementary watershed in SW Cameroon, firstly to assess the applicability of direct-current (DC) resistivity methods to solve various pedological problems in intertropical regions, and subsequently to determine the relationships between electrical resistivities and pedological properties of lateritic soil systems. The survey included measurements in pits with a small Wenner fixed-spacing array (SWA), vertical electrical soundings (VES) and vertical electrical “quick soundings” (VEQS) both using the Schlumberger configuration. The VES data were interpreted using a conventional multilayer inversion program to obtain best-fit models. Constraints to the interpretation of these data were provided by SWA and pedological information from existing observation pits. The results of the interpretation reveal five distinct geoelectrical layers overlying a resistive bedrock. The first is a thin organo-mineral upper layer with low resistivities in the range 250–450 Ωm. The second layer corresponds to micro-aggregated clayey materials and is more resistive (1300–1800 Ωm). The third represents the main part of ferruginous materials and is even more resistive (2000–4500 Ωm). The fourth corresponds to unsaturated saprolite and the last to saturated saprolite (ground water) with resistivities ranging from 800 to 1500 Ωm and from 150 to 250 Ωm, respectively. Estimates of soil volumes for the entire study area were obtained from VEQS interpretations. Most of the soil cover corresponds to saprolite (74%, being saturated by ground water), while topsoil and ferruginous materials represent 14 and 12%, respectively. Finally, geophysical results based upon 1-D inversion provide a satisfactory approximation of the various lateritic components' 3-D geometry over the watershed. The study provides original quantitative results concerning the behaviour of intertropical soil systems as well as some geomorphological keys for soil mapping at a regional scale.  相似文献   

3.
I. Introduction In this section the problem is stated, its physical and mathematical difficulties are indicated, and the way the authors try to overcome them are briefly outlined. Made up of a few measurements of limited accuracy, an electrical sounding does not define a unique solution for the variation of the earth resistivities, even in the case of an isotropic horizontal layering. Interpretation (i.e. the determination of the true resistivities and thicknesses of the ground-layers) requires, therefore, additional information drawn from various more or less reliable geological or other geophysical sources. The introduction of such information into an automatic processing is rather difficult; hence the authors developped a two-stage procedure:
  • a) the field measurements are automatically processed, without loss of information, into more easily usable data;
  • b) some additional information is then introduced, permitting the determination of several geologically conceivable solutions.
The final interpretation remains with the geophysicist who has to adjust the results of the processing to all the specific conditions of his actual problem. II. Principles of the procedure In this section the fundamental idea of the procedure is given as well as an outline of its successive stages. Since the early thirties, geophysicists have been working on direct methods of interpreting E.S. related to a tabular ground (sequence of parallel, homogeneous, isotropic layers of thicknesses hi and resistivities ρi). They generally started by calculating the Stefanesco (or a similar) kernel function, from the integral equation of the apparent resistivity: where r is the distance between the current source and the observation point, S0 the Stefanesco function, ρ(z) the resistivity as a function of the depth z, J1 the Bessel function of order 1 and λ the integration variable. Thicknesses and resistivities had then to be deduced from S0 step by step. Unfortunately, it is difficult to perform automatically this type of procedure due to the rapid accumulation of the errors which originate in the experimental data that may lead to physically impossible results (e.g. negative thicknesses or resistivities) (II. 1). The authors start from a different integral representation of the apparent resistivity: where K1 is the modified Bessel function of order I. Using dimensionless variables t = r/2h0 and y(t)=ζ (r)/ρ1 and subdividing the earth into layers of equal thicknesses h0 (highest common factor of the thicknesses hi), ø becomes an even periodic function (period 2π) and the integral takes the form: The advantage of this representation is due to the fact that its kernel ø (function of the resistivities of the layers), if positive or null, always yields a sequence of positive resistivities for all values of θ and thus a solution which is surely convenient physically, if not geologically (II.3). Besides, it can be proved that ø(θ) is the Fourier transform of the sequence of the electric images of the current source in the successive interfaces (II.4). Thus, the main steps of the procedure are: a) determination of a non-negative periodic, even function ø(θ) which satisfies in the best way the integral equation of apparent resistivity for the points where measurements were made; b) a Fourier transform gives the electric images from which, c) the resistivities are obtained. This sequence of resistivities is called the “comprehensive solution”; it includes all the information contained in the original E.S. diagram, even if its too great detail has no practical significance. Simplification of the comprehensive solution leads to geologically conceivable distributions (h, ρ) called “particular solutions”. The smoothing is carried out through the Dar-Zarrouk curve (Maillet 1947) which shows the variations of parameters (transverse resistance Ri= hii–as function of the longitudinal conductance Ci=hii) well suited to reflect the laws of electrical prospecting (principles of equivalence and suppression). Comprehensive and particular solutions help the geophysicist in making the final interpretation (II.5). III. Computing methods In this section the mathematical operations involved in processing the data are outlined. The function ø(θ) is given by an integral equation; but taking into account the small number and the limited accuracy of the measurements, the determination of ø(θ) is performed by minimising the mean square of the weighted relative differences between the measured and the calculated apparent resistivities: minimum with inequalities as constraints: where tl are the values of t for the sequence of measured resistivities and pl are the weights chosen according to their estimated accuracy. When the integral in the above expression is conveniently replaced by a finite sum, the problem of minimization becomes one known as quadratic programming. Moreover, the geophysicist may, if it is considered to be necessary, impose that the automatic solution keep close to a given distribution (h, ρ) (resulting for instance from a preliminary interpretation). If φ(θ) is the ø-function corresponding to the fixed distribution, the quantity to minimize takes the form: where: The images are then calculated by Fourier transformation (III.2) and the resistivities are derived from the images through an algorithm almost identical to a procedure used in seismic prospecting (determination of the transmission coefficients) (III.3). As for the presentation of the results, resorting to the Dar-Zarrouk curve permits: a) to get a diagram somewhat similar to the E.S. curve (bilogarithmic scales coordinates: cumulative R and C) that is an already “smoothed” diagram where deeper layers show up less than superficial ones and b) to simplify the comprehensive solution. In fact, in arithmetic scales (R versus C) the Dar-Zarrouk curve consists of a many-sided polygonal contour which múst be replaced by an “equivalent” contour having a smaller number of sides. Though manually possible, this operation is automatically performed and additional constraints (e.g. geological information concerning thicknesses and resistivities) can be introduced at this stage. At present, the constraint used is the number of layers (III.4). Each solution (comprehensive and particular) is checked against the original data by calculating the E.S. diagrams corresponding to the distributions (thickness, resistivity) proposed. If the discrepancies are too large, the process is resumed (III.5). IV. Examples Several examples illustrate the procedure (IV). The first ones concern calculated E.S. diagrams, i.e. curves devoid of experimental errors and corresponding to a known distribution of resistivities and thicknesses (IV. 1). Example I shows how an E.S. curve is sampled. Several distributions (thickness, resistivity) were found: one is similar to, others differ from, the original one, although all E.S. diagrams are alike and characteristic parameters (transverse resistance of resistive layers and longitudinal conductance of conductive layers) are well determined. Additional informations must be introduced by the interpreter to remove the indeterminacy (IV.1.1). Examples 2 and 3 illustrate the principles of equivalence and suppression and give an idea of the sensitivity of the process, which seems accurate enough to make a correct distinction between calculated E.S. whose difference is less than what might be considered as significant in field curves (IV. 1.2 and IV. 1.3). The following example (number 4) concerns a multy-layer case which cannot be correctly approximated by a much smaller number of layers. It indicates that the result of the processing reflects correctly the trend of the changes in resistivity with depth but that, without additional information, several equally satisfactory solutions can be obtained (IV. 1.4). A second series of examples illustrates how the process behaves in presence of different kinds of errors on the original data (IV.2). A few anomalous points inserted into a series of accurate values of resistivities cause no problem, since the automatic processing practically replaces the wrong values (example 5) by what they should be had the E.S. diagram not been wilfully disturbed (IV.2.1). However, the procedure becomes less able to make a correct distinction, as the number of erroneous points increases. Weights must then be introduced, in order to determine the tolerance acceptable at each point as a function of its supposed accuracy. Example 6 shows how the weighting system used works (IV.2.2). The foregoing examples concern E.S. which include anomalous points that might have been caused by erroneous measurements. Geological effects (dipping layers for instance) while continuing to give smooth curves might introduce anomalous curvatures in an E.S. Example 7 indicates that in such a case the automatic processing gives distributions (thicknesses, resistivities) whose E.S. diagrams differ from the original curve only where curvatures exceed the limit corresponding to a horizontal stratification (IV.2.3). Numerous field diagrams have been processed (IV. 3). A first case (example 8) illustrates the various stages of the operation, chiefly the sampling of the E.S. (choice of the left cross, the weights and the resistivity of the substratum) and the selection of a solution, adapted from the automatic results (IV.3.1). The following examples (Nrs 9 and 10) show that electrical prospecting for deep seated layers can be usefully guided by the automatic processing of the E.S., even when difficult field conditions give original curves of low accuracy. A bore-hole proved the automatic solution proposed for E.S. no 10, slightly modified by the interpreter, to be correct.  相似文献   

4.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

5.
In recent years, geophysical methods (shallow seismic, electromagnetic, resistivity, ground penetrating radar) have been increasingly applied to overburden investigations. Their effectiveness has been found to depend significantly on local geological conditions. Compared with advanced seismic techniques, EM methods are faster and hence more cost-effective, but they have not been considered sufficiently accurate. Analysis is carried out of data obtained with the multifrequency horizontal-loop method (HLEM) in northeastern Ontario, where the overburden consists of Quaternary glacial and glaciolacustrine sediments. Surveying along 1-6 km long profiles permitted recognition of bedrock inhomogeneities and selection of sites suitable for HLEM data interpretation using the layered model. Phasor diagrams and computer inversion based on the ridge regression technique were used to interpret HLEM soundings obtained at eight frequencies. Interpreted layer resistivities and thicknesses were correlated with the results of Rotasonic drilling at 70 sites. Relatively accurate estimates of overburden thickness (within 10%) could be obtained in about 80% of the cases. Nine examples of HLEM soundings are given and discussed: three each of one-, two- and three-layer situations. An appropriate interpretation model cannot be selected simply by minimizing the rms error or by analysing the parameter resolution matrix. Frequently, the most effective way of evaluating a solution is to consider whether resistivity values determined by inversion fit any of the ranges determined by statistical analyses of sediment resistivities. A previously published study of electrical properties of Quaternary sediments indicated that resistivities of clay, till and sand are stable within a fairly large area, such as the one under investigation. While the application of HLEM methods to mapping of Quaternary sediments can be considered a success, interpretation of EM data in regions covered by glacial sediments is more difficult than in weathered terrains, where near-surface layering is more predictable. The problem of equivalence causes non-uniqueness in interpretation. Thickness equivalence, which results in poor resistivity estimates, was found to affect areas convered by sand and till. Conductance equivalence caused poor resolution of thickness and resistivity for thin clay layers (less than 10 m).  相似文献   

6.
The “Autorité des amenegements des valées des Voltas (AVV)” is establishing new rural settlements in the Volta valleys. First, a survey of available water supplies is performed. Economic aquifers in Precambrian terrains are deep (15–50 m) and usually occur in fractured zones accompanying faults. Such zones can be identified on aerial photographs, but their precise location on the ground is virtually impossible by visual means. Because of the small size of the aquifers, a location error of 5 m can make the difference between a productive well and a dry hole. Traditionally, resistivity profiling has been used as the means of locating the fractured zones in the field. Our studies suggest that the task can be performed faster, cheaper and more accurately by VLF and EM methods. Because of the limited choice of transmitting stations reccivable in Upper Volta, the VLF method is not sufficiently sensitive to detect conductors with a strike between 45° and 105°. The results obtained with a multifrequency, horizontal-loop EM (HLEM) system were satisfactory in all investigated areas. During the 1980 field season, 35 target areas were surveyed. Of the 24 holes drilled so far, 23 are productive. The weathered layer is a source of distinctive HLEM anomalies, which are characteristic of the underlying rocks. Therefore, different interpretational procedures had to be developed for granitic and volcano-sedimentary areas. Despite the high background level of in-phase and quadrature components, which varied with thickness and conductivity of the weathered layer, aquifers could be detected at a depth greater than 30 m. Attempts were made to interpret the HLEM results quantitatively using two models: a three-layer medium and a valley discontinuity. The latter model is more realistic, but more scale modelling will have to be performed to permit development of viable interpretational procedures. Meanwhile, phasor diagrams based on drilling and resistivity sounding data can be used to estimate the aquifer depth.  相似文献   

7.
Direct-current (DC) resistivity tomography has been applied to different mountain permafrost regions. Despite problems with the very high resistivities of the frozen material, plausible results were obtained. Inversions with synthetic data revealed that an appropriate choice of regularization constraints was important, and that a joint analysis of several tomograms computed with different constraints was required to judge the reliability of individual features. The theoretical results were verified with three field experiments conducted in the Swiss and the Italian Alps. At the first site, near Zermatt, Switzerland, the location and the approximate lateral and vertical extent of an ice core within a moraine could be delineated. On the Murtel rock glacier, eastern Swiss Alps, a steeply dipping boundary at its frontal part was observed, and extremely high resistivities of several MΩ indicated a high ice content. The base of the rock glacier remained unresolved by the DC resistivity measurements, but it could be constrained with transient EM soundings. On another rock glacier near the Stelvio Pass, eastern Italian Alps, DC resistivity tomography allowed delineation of the rock glacier base, and the only moderately high resistivities within the rock glacier body indicated that the ice content must be lower compared with the Murtel rock glacier.  相似文献   

8.
It is advantageous to postulate the phenomenological equivalence of chargeability with a slight increase in resistivities rather than a similar reduction in the conductivities. Substitution of these increments in the expression for the total differential of apparent resistivity leads directly to Seigel's formula. Included also are (i) an equally simple demonstration that, for a homogeneously chargeable ground with arbitrary resistivity distribution, the apparent chargeability ma, equals the true homogeneous value m, and (ii) a direct derivation of the completely general resistivity relation where the symbols have the usual meanings.  相似文献   

9.
When the fixed-source electromagnetic method is applied the quantities measured are influenced by the resistivity of the whole environment. This occurs mostly in the cases of measurements in areas with prevailing high resistivities, and if a weathered layer with considerably lower resistivity than that of the original rock has been formed near the surface. For this reason it is important to be acquainted with the properties of the two-layer ground with an overlying conductive layer. In the present paper attention will be drawn to theoretical calculations connected with the field of the homogeneous ground and that of the two-layer ground.  相似文献   

10.
A combination of DC-resistivity sounding and profiling measurements can be used to obtain the maximum information about distribution of resistivities in the earth. Combined sounding-profiling measurements with the AMN, MNB arrays are considered. The resistivity data from such measurements can be presented as: (a) normal sounding curves, (b) combined sounding-profiling curves, (c) profiling curves, (d) pseudo-sections, or as transformations obtained by the so-called gradient processing, to emphasize the influence of the target objects. The examples chosen from numerical modeling and field tests show the efficiency of measurements with three-electrode arrays to accurately locate thin conductors and contacts of lithological units of different resistivities. An interpreted cross-section is compared with the results of other geophysical measurements (VLF-R, dipole EM, Δ, IP) showing good correlation.  相似文献   

11.
Integrated geophysical and chemical study of saline water intrusion   总被引:3,自引:0,他引:3  
Choudhury K  Saha DK 《Ground water》2004,42(5):671-677
Surface geophysical surveys provide an effective way to image the subsurface and the ground water zone without a large number of observation wells. DC resistivity sounding generally identifies the subsurface formations-the aquifer zone as well as the formations saturated with saline/brackish water. However, the method has serious ambiguities in distinguishing the geological formations of similar resistivities such as saline sand and saline clay, or water quality such as fresh or saline, in a low resistivity formation. In order to minimize the ambiguity and ascertain the efficacy of data integration techniques in ground water and saline contamination studies, a combined geophysical survey and periodic chemical analysis of ground water were carried out employing DC resistivity profiling, resistivity sounding, and shallow seismic refraction methods. By constraining resistivity interpretation with inputs from seismic refraction and chemical analysis, the data integration study proved to be a powerful method for identification of the subsurface formations, ground water zones, the subsurface saline/brackish water zones, and the probable mode and cause of saline water intrusion in an inland aquifer. A case study presented here illustrates these principles. Resistivity sounding alone had earlier failed to identify the different formations in the saline environment. Data integration and resistivity interpretation constrained by water quality analysis led to a new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking.  相似文献   

12.
This paper describes certain procedures for deriving from the apparent resistivity data as measured by the Wenner electrode configuration two functions, known as the kernel and the associated kernel respectively, both of which are functions dependent on the layer resistivities and thicknesses. It is shown that the solution of the integral equation for the Wenner electrode configuration leads directly to the associated kernel, from which an integral expression expressing the kernel explicitly in terms of the apparent resistivity function can be derived. The kernel is related to the associated kernel by a simple functional equation where K1(λ) is the kernel and B1(λ) the associated kernel. Composite numerical quadrature formulas and also integration formulas based on partial approximation of the integrand by a parabolic arc within a small interval are developed for the calculation of the kernel and the associated kernel from apparent resistivity data. Both techniques of integration require knowledge of the values of the apparent resistivity function at points lying between the input data points. It is shown that such unknown values of the apparent resistivity function can satisfactorily be obtained by interpolation using the least-squares method. The least-squares method involves the approximation of the observed set of apparent resistivity data by orthogonal polynomials generated by Forsythe's method (Forsythe 1956). Values of the kernel and of the associated kernel obtained by numerical integration compare favourably with the corresponding theoretical values of these functions.  相似文献   

13.
In all electrical methods (EM, MT, DC), a theoretical one-to-one relation links the apparent resistivity diagram at a station with the local distribution of the resistivities in a tabular earth. Unfortunately, the actual field diagrams derive from a few measurements of limited accuracy and the one-to-one relation vanishes. Calculating the distribution of the earth resistivities from the field diagrams is thus an undetermined problem, which experience has shown to be partly controlled by approximate laws of “equivalence”. The use of these rough rules can produce only a very restricted number of the resistivity distributions that correspond to calculated diagrams which do not differ from a given field curve by more than a tolerable discrepancy. On the other hand, the full set of such “equivalent” solutions is given automatically by a computer program. Tests made on field examples prove that a few geological data generally reduce the wide range of undetermination.  相似文献   

14.
 A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Réunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60–100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos, the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched water tables. The known occurrence of large eastward-moving landslides in the evolution of Piton de la Fournaise strongly suggests that large volumes of breccias should exist in the interior of the volcano; however, extensive breccia deposits are not observed at the bottom of the deep valleys that incise the volcano to elevations lower than those determined for the top of the conductors. The presence of the center of Piton de la Fournaise beneath the Plaine des Sables area during earlier volcanic stages (ca. 0.5 to 0.150 Ma) may have resulted in broad hydrothermal alteration of this zone. However, this interpretation cannot account for the low resistivities in peripheral zones. It is not presently possible to discriminate between these general interpretations. In addition, the nature of the deep conductors may be different in each zone. Whatever the geologic nature of these conductive layers, their presence indicates a major change of lithology at depth, unexpected for a shield volcano such as Piton de la Fournaise. Received: 3 November 1999 / Accepted: 15 September 1999  相似文献   

15.
油层注入聚合物溶液后,电阻率测井响应发生与水驱不同的变化特征,严重影响水淹层测井评价的效果。本文首先分析了聚合物溶液的导电性质,其次按照聚合物驱油层不同施工流程开展岩电实验研究,分析不同驱替阶段的岩石电阻率的变化特征。并对比分析聚合物驱与水驱油层电阻率测井响应的差异。结果表明,不同聚合物驱替饱含油岩心过程,岩心电阻率随饱和度变化呈现"w"型或"S"型和单调下降的形态;清水聚合物驱油层电阻率测井响应呈现弱、未水淹的特征;污水聚合物驱油层电阻率测井响应呈现与污水水驱相似的变化特征。  相似文献   

16.
Analytical solutions of vertical electrical soundings (VES) have mostly been applied to groundwater exploration and monitoring groundwater quality on terrains of fairly simple geology and geomorphology on which the electrode arrays are symmetrical (e.g. Schlumberger or Wenner configurations). The sounding interpretation assumes flat topography and horizontally stratified layers. Any deviations from these simple situations may be impossible to interpret analytically. The recently developed GEA-58 geoelectrical instrument can make continuous soundings along a profile with any colinear electrode configuration. This paper describes the use of finite-difference and finite-element methods to model complex earth resistivity distributions in 2D, in order to calculate apparent resistivity responses to any colinear current electrode distribution in terrains in which the earth resistivities do not vary along the strike. The numerical model results for simple situations are compared with the analytical solutions. In addition, a pseudo-depth section of apparent resistivities measured in the field with the GEA-58 is compared with the numerical solution of a real complex resistivity distribution along a cross-section. The model results show excellent agreement with the corresponding analytical and experimental data.  相似文献   

17.
One of the significant problems of modern deep magnetotellurics is the recognition of anisotropy in the crustal and mantle conductive zones. In the paper we perform numerical experiment comparing several 2D models of crustal and mantle isotropic and anisotropic prismatic conductors. Anisotropy is modeled by alternating horizontal or vertical thin layers of different resistivities (the vertical layers are parallel to the prism strike). Using these models, we examine conditions under which the magnetotelluric and magnetovariational response functions distinguish between isotropy and anisotropy. The resolution of MT and MV studies depends on the sediments conductance, lithosphere resistance and deep conductor width. Calculations show that the most favorable conditions for anisotropy studies are observed in the active regions characterized by small sediments conductance (10–20 S) and moderate lithosphere resistance (108 Ohm·m2). However, in the stable regions, where sediments conductance exceeds 50–100 S and the lithosphere resistance comes up to 109 Ohm·m2, the crustal and mantle anisotropic and isotropic conductors manifest themselves in the equivalent magnetotelluric and magnetovariational functions, which cannot distinguish between anisotropy and isotropy and admit both the interpretations.  相似文献   

18.
In the paper, the mathematical tools, used for the modelling of the electromagnetic field of the harmonic plane wave in the two-dimensional inhomogeneous medium (the case ofE-polarization), are presented. Further, the resolving power of some parameters, that are measured in the VLF and VLF-R methods, is compared in the case of two vertical conductive dykes. To this aim, all the usual parameters of the VLF method and the most important parameter of the VLF-R method () have been chosen. Two groups of models that differ in resistivities have been considered. In each of the groups the distance of the dykes is variable. The parameters |H y|, which has shown most promising in this respect, is examined also from the point of view of the sensibility to geological noise. The results of the modelling are illustrated by two examples of the results of field measurements.  相似文献   

19.
The problem of interpretation of geoelectrical resistivity soundings has been studied and a compromise method of interpretation developed. A simple depth sequence of increasing bed thickness is taken and resistivities assigned to the various layers so that a good fit is obtained to the observed apparent resistivity curve. An initial estimate of the resistivities is made by a direct method but the model is then altered to give an improved fit by the indirect method of curve matching. The whole method is computerized and input data to the computer program consists of spacings and apparent resistivities. The method is extremely rapid, about one third of the computation time is devoted to obtaining the resistivity transform by the method of convolution. A normal type of solution, incorporating additional information if necessary, can also be obtained.  相似文献   

20.
This paper presents the results of simultaneous observations of narrow-band noise VLF emissions in the frequency range 4–10 kHz at Kannuslehto ground station in Northern Finland and by Van Allen Probes (previously RBSP) in the equatorial part of the magnetosphere. The event of December 25, 2015, is considered. During the event, narrow-band noise VLF emissions were detected on the Earth in two frequency ranges, f = 3.5–6 kHz and f = 8–10 kHz, between 1100 and 1300 UT. Narrow-band VLF emissions in the equatorial zone were also observed during that time by the RBSP-B satellite; their frequency was close to the electron equatorial half-gyrofrequency and gradually increased from 3 to 11 kHz during the satellite motion from L = 5.0 to L = 3.0. Analysis of the fine structure of the emissions on the ground showed that their spectral and temporal characteristics corresponded to emissions by the satellites in localized zones at different L-shells. The ground-based observations at lower frequencies correlated with the satellite observations at larger L-shells. In order to localize the regions of the generation of the VLF emissions observed at Kannuslehto auroral station at different frequencies, we calculated the ray trajectories of waves from the equator for the plasma density distributions detected by Van Allen Probes. The calculations of the trajectories showed that the VLF waves detected at Kannuslehto station could travel to the ground only if they propagated in the large-scale density ducts (700–900 km) observed by Van Allen Probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号