首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of an axially-symmetric viscous fluid interacting with the gravitational field has been investigated. Exact solutions have been obtained for the pressure and density of the viscous fluid. Physical interpretation of the solutions in respect of the expansion factor, acceleration components reality conditions of the distribution, etc., have been made.  相似文献   

2.
The problem of cosmological axially-symmetric viscous fluid interacting with the gravitational field has been investigated. Exact solution have been obtained for the pressure and density of the fluid. Physical interpretation of the solutions regarding the expansion factor, acceleration components and reality condition have been made. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The study of Einstein's field equations describing Robertson-Walker cosmological models with massive scalar field and viscous fluid representing the matter has been made. The problem has been investigated with and without the source density in the wave equation. Corresponding exact solutions of the field equations have been obtained under different physical equations of state: namely, (i) dust distribution, (ii) Zeldovich fluid distribution, (iii) disordered distribution of radiation subject to physically realistic conditions. The physical interpretations of the physically realistic solutions has been investigated. It has been found that physically realistic solutions has been obtained for closed cosmological models only.  相似文献   

4.
The paper considers inhomogeneous space-times admitting a two-parameter group of motions and satisfying Einstein's field equations for viscous fluid and perfect fluid with heat conduction. Some homogenous solutions representing viscous fluid have also been obtained for which the free-gravitational field is of the magnetic type. Various physical and kinematical properties have been discussed.  相似文献   

5.
The problem of electromagnetic field interacting with viscous fluid without and with zero-mass scalar field has been studied. It has been shown that electromagnetic field cannot interact with viscous fluid for spherically-symmetric Robertson-Walker metric. Exact solutions corresponding to the problem of electromagnetic field interactions in presence of viscous fluid and zero-mass scalar field have been obtained subject to various physical conditions. It presents a scope for the study of imperfect fluid FRW models showing the existence of the electromagnetic field due to the presence of zero-mass scalar field.  相似文献   

6.
Hypersurface–homogeneous cosmological models containing a bulk viscous fluid with time varying G and Λ have been presented. We have shown that the field equations are solvable for any arbitrary cosmic scale function. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of the energy density. Exact solutions of Einstein’s field equations are obtained which represent an expanding, shearing and accelerating/decelerating models of the universe. The physical and kinematical behaviours of the models are also discussed.  相似文献   

7.
Relativistic cosmological field equations are obtained for a Robertson-Walker space time interacting with viscous fluid and massive scalar field. The cosmological solutions to the field equations are obtained and the nature of the scalar field as well as the viscous fluid are studied. It is found that the solutions obtained are realistic only for a closed Universe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Solutions of Brans-Dicke field equations are obtained when the source of the gravitational field is a perfect fluid with pressure equal to energy density and the metric is cylindrically symmetric of Marder-type. Various physical and geometrical properties of the model have been discussed. Finally the solutions have been transformed to the original form of Brans-Dicke (1961) theory and then through unit transformation to a general form.  相似文献   

9.
The Bianchi type-V cosmological model with viscous fluid and creation particle in Brans-Dicke theory has been considered. The present paper deals with Bianchi type-V cosmological model with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We have discussed two types of solutions of the average scale factor for a Bianchi type-V model by using a variation law of Hubble’s parameter, which yields a constant value of the deceleration parameter. The exact solutions to the corresponding field equations are obtained in quadrature form. The solutions to the Einstein field equations are obtained for power law and exponential form. The cosmological parameters have been discussed in detail.  相似文献   

10.
Non-static inhomogeneous cosmological models are obtained in general relativity for the case of a plane symmetric massless scalar field with cosmological constant A,when the source of the gravitational field is a viscous fluid.Some physical and geometrical behaviors of the solutions are also discussed.  相似文献   

11.
We consider a system of nonlinear spinor and a Bianchi type I gravitational fields in presence of viscous fluid. The nonlinear term in the spinor field Lagrangian is chosen to be λ F, with λ being a self-coupling constant and F being a function of the invariants I an J constructed from bilinear spinor forms S and P. Self-consistent solutions to the spinor and BI gravitational field equations are obtained in terms of τ, where τ is the volume scale of BI universe. System of equations for τ and ε, where ε is the energy of the viscous fluid, is deduced. This system is solved numerically for some special cases.   相似文献   

12.
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m(R is a scale factor and m is a constant).A variety of solutions is presented.The physical significance of the cosmological models has also been discussed.  相似文献   

13.
Zero-curvature Friedmann-Robertson-Walker cosmological models that are exact solutions of Einstein's field equations and the laws of thermodynamics in which the source of the gravitational field is a comoving radiation field and a radial non-comoving imperfect fluid are investigated.  相似文献   

14.
Exact nonstatic solutions to Einstein field equations are obtained for the plane symmetric spacetime filled with viscous perfect fluid in the presence of attractive scalar fields. Some physical and geometrical properties of the model are studied. The solutions characterize strong interaction of elementary particles.  相似文献   

15.
The problem of viscous fluid distribution in Bianchi type I space-time is considered here in a new scalar tensor theory of gravitation proposed by Saez and Ballester (1986). Particular solutions of the field equations are derived assuming the viscous coefficient to be the power functions of energy density. Some physical and geometrical properties of the solutions are also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Exact solutions are obtained for an isotropic homogeneous universe with a bulk viscous fluid in the cosmological theory based on Lyra’s geometry. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of the mass density. Cosmological models with time dependent displacement field have been discussed for a constant value of the deceleration parameter. Finally some possibilities of further problems and their investigations have been pointed out.  相似文献   

17.
In this paper, the Einstein field equations have been solved for cylindrically symmetric and inhomogeneous cosmological models with viscous fluid. Various physical and geometrical properties of the models are also discussed.  相似文献   

18.
The similarity solution for hydromagnetic flow of an incompressible viscous electrically conducting fluid past a continuously moving semi-infinite porous plate in the presence of a magnetic field has been obtained for the case of small magnetic Reynolds number. The perturbation method has been used to solve the similarity equations at large suction. The resulting equations have been solved by analytical method. The effect of the magnetic parameter is to increase the skin-friction coefficient while it has no significant effect on the Nusselt number.  相似文献   

19.
Rotation effect on the hydromagnetic free-convection flow of an electrically conducting, viscous, and incompressible fluid past a steadily moving vertical porous plate has been analysed in the presence of a transverse magnetic field. The free-stream velocity oscillates in time about a constant mean, while the suction velocity, normal to the porous plate, is constant. The magnetic Reynolds number of the flow is taken small enough so that the induced magnetic field can be neglected. The plate temperature is constant and the difference between the temperature of the plate and the free stream is moderately large causing the free-convection currents. The flow field is described by nonlinar coupled system of equations. With viscous dissipative heat taken into account, approximate solutions of the problem are obtained for the components of velocity field and temperature field as well as for the skin-friction components and rate of heat transfer.  相似文献   

20.
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-Ⅰ universe by assuming that the cosmological term is proportional to R-m(R is a scale factor and m is a constant).A variety of solutions are presented.The physical significance of the respective cosmological models are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号