首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hercynian gabbroic, dioritic and tonalitic rocks crop out in the neighbourhood of Rovale (Sila Grande, Calabria). They make up a crude rectangular outcrop with the western part consisting of gabbroic rocks and the eastern of dioritic and tonalitic rocks. They come into contact with medium to high grade metapelites on the western side and with heterogeneous granodiorites on the other sides. In the gabbroic body both opx ± ol bearing cumulates and amphibole differentiates occur and are characterized by the widespread presence of brown pargasite. Sporadic magmatic to subsolidus corona textures between olivine and plagioclase or orthopyroxene and plagioclase can be observed and their preservation clearly suggests a post-tectonic emplacement for the gabbroic magma. Diorites and tonalites display hypidiomorphic textures free of olivine and orthopyroxene and bearing green Mg-hornblende. The granitoids, on the basis of chemical data, display orogenic features of the continent-continent collision type. The gabbroic rocks have high Al tholeiitic composition and fractionation of orthopyroxene and plagioclase played an important part in their evolution. The Rb/Sr isochron method did not give a precise emplacement age for the granitoids as a whole. Initial 87Sr/86Sr ratios (at 290 Ma) are higher in the gabbroic body (0.7091–0.7095) than in diorites and tonalites (0.7083–0.7092). Thus gabbroic rocks appear more displaced than diorites and tonalites towards crustal isotopic composition. The eNd data seem to confirm this feature, thus suggesting that the gabbroic rocks and diorites derived from distinct mantle magma batches. Interestingly, small isotropic gabbroic masses occur within the diorites and show general features that allow them to be considered as possibly parental with respect to the host diorites. The evolution to the dioritic composition might have occurred through fractionation and minor mixing with a more acidic component such as the northern granodiorites. Geochemical, Sr and Nd isotopic data indicate a scenario of a composite plutonic body formed by distinct magma batches of mixed crust and mantle origin.  相似文献   

2.
This study aims to discriminate and to map the basement rocks as well as the barite mineralization exposed at El Hudi area, Southeastern Desert, Egypt using the processed short-wave infrared bands of advanced space-borne thermal emission and reflection radiometer (ASTER) in collaboration with the field verification and petrographic analysis. El Hudi area is covered dominantly by the Late Precambrian high-grade metamorphic complex of metasedimentary rocks (gneisses, schists, migmatites, and minor amphibolites) which are intruded by the younger granitoids. Nubian sandstones unconformably overlie the basement outcrops and occur as a remnant caps. The metasedimentary rocks cover the area of interest forming a belt of biotite gneisses and migmatites intercalated with hornblende biotite schists and minor amphibolites. Their exposures exhibit well-foliated and banded structures. The metasedimentary rocks have gray and dark gray image signatures on the ASTER band ratio image 8/5, which correspond to biotite gneiss, migmatites, and hornblende biotite schists, respectively. Presence of absorption feature near band 8 (2.295 – 2.365 μm) for the chlorite alteration product is probably responsible for the lowering of the 8/5 band ratio value and the dark gray image signature exhibited by hornblende biotite schists. The granitoid rocks in El Hudi area are late to postorogenic younger granitoids including three main rock types, Abu Aggag granites, El Hudi garnetiferous muscovite granites, and coarse-grained biotite granites. The acidic dykes are cutting across the granitoids and the gneisses and they form a highly elevated ridges and peaks showing sharp contact with the invaded rocks. Abu Aggag granites are highly dissected by great number of both strike- and dip-slip faults as well as joints trending in NNW–SSE, NNE–SSW, N–S, ENE–WSW, and WNW–ESE directions. On 7/8 band ratio image, Abu Aggag granites have dark gray image signature whereas postgranitic dykes have white image signature. Under the microscope, Abu Aggag granites are homogenous medium to coarse-grained rocks composed mainly of quartz, plagioclase, microcline, and biotite. Zircon, apatite, and opaques are accessories, while chlorite, kaolinite, and epidote are secondary minerals. Presence of absorption feature around band 7 (2.235–2.285 μm) for the kaolinite mineral may be responsible for the dark gray image signature exhibited by Abu Aggag granites. El Hudi garnetiferous muscovite granites are hosting El Hudi barite veins which extend mainly in NNW–SSE and NW–SE. Garnetiferous muscovite granites have gray image signature on 5/4 band ratio image whereas pegmatites and postgranitic dykes have black image signature. Barite veins can be distinguished within garnetiferous muscovite granites by their dark gray image signature on 5/4 band ratio image. The spectral reflectance curve of barite exhibits absorption feature around 2.1 μm (band 5), which leads to lower the ratio value and yields the dark image signature to barite veins. The above-described ASTER band ratio images were integrated into one false-color composite image (8/5:R; 5/4G; and 7/8B) which was used to produce 1:100,000 geological map for El Hudi area and to locate the barite mineralization.  相似文献   

3.
Rocks of the Moruya Batholith range from gabbros and gabbroic diorites through quartz diorites and tonalites to granodiorites and rare adamellites. The gabbros and gabbroic diorites appear as small, early bodies intruded and enclosed by quartz diorites and tonalites. These early gabbroids are petrographically and chemically distinct from the granitoids. The latter occur as a meridionally‐oriented sequence of nine separate plutons. Mafic xenoliths are most abundant in the quartz diorites and tonalites; they are petrographically similar to their host granitoids and are chemically a more mafic extension of the variation in granitoid compositions. The various granitoid bodies are considered to be derived from similar source rocks, with the xenoliths representing modified material relict from partial melting of that source.

Comparison of chemical data from the Moruya granitoids with those of the I‐types of the Jindabyne Suite in the Kosciusko Batholith, shows that the potassium content is indistinguishable in the two suites from each side of the Moruya‐Kosciusko Province, although elsewhere it has been shown to vary systematically across an orogenic belt. The most outstanding difference is the higher Na and Ti and lower Ca in the Moruya Batholith compared with those in Kosciusko Batholith I‐type granitoids.  相似文献   

4.
Within the northern fringe of the western (Khangai) flank of the Mongol–Okhotsk fold belt, magmatic complexes of intermediate to moderately acidic rocks occur. They comprise widely distributed gabbro–diorites, diorites, tonalites, and granodiorites. Geochronological studies have demonstrated that these rocks were formed in the time span of 437 to 375 Ma. The geochemical affinities of the rocks suggest their formation in subduction tectonic settings; hence, their paleotectonic position corresponds to the continental margin of the Mongol–Okhotsk paleoocean. It has been concluded that this Middle Paleozoic igneous activity occurred in the active continental margin settings, formed by subduction of the paleooceanic plate under the Siberian continent.  相似文献   

5.
The Wadi Dabr intrusive complex, west of Mersa-Alam, Eastern Desert, Egypt ranges in composition from gabbro to diorite, quartz diorite and tonalite. The gabbroic rocks include pyroxene-horn blend e gabbro, hornblende gabbro, quartz-hornblende gabbro, metagabbro and amphibolite. Mineral chemistry data for the gabbroic rocks indicate that the composition of clinopyroxenes ranges from diopside to augite and the corresponding magma is equivalent to a volcanic-arc basalt. Plagioclase cores range from An75 to An34 for the gabbroic varieties, except for the metagabbro which has An 11–18. The brown amphiboles are primary phases and classified as calcic amphiboles, which range from tschermakitic hornblende to magnesiohornblende. Green hornblende and actinolite are secondary phases. Hornblende barometry and hornblende-plagioclase themometry for the gabbroic rocks estimate crystallisation conditions of 2–5 kb and 885–716°C.The intrusive rocks cover an extensive silica range (47.86–72.54 wt%) and do not exhibit simple straight-line variation on Harker diagrams for many elements (e.g. TiO2, Al2O3, FeO*, MgP, CaO, P2O5, Cr, Ni, V, Sr, Zr and Y). Most of these elements exhibit two geochemical trends suggesting two magma sources.The gabbroic rocks are relatively enriched in large ion lithophile elements (K, Rb, Sr and Ba) and depleted in high field strength elements (Nb, Zr, Ti and Y) which suggest subduction-related magma. Rare earth element (REE) data demonstrate that the gabbroic rocks have a slight enrichment of light REE [(La/Yb)N=2.67−3.91] and depletion of heavy REE ((Tb/Yb)N=1.42−1.47], which suggest the parent magma was of relatively primitive mantle source.The diorites and tonalites are clearly calc-alkaline and have negative anomalies of Nb, Zr, and Y which also suggest subduction-related magma. They are related to continental trondhjemites in terms of Rb---Sr, K---Na---Ca, and to volcanic-arc granites in terms of Rb---and Nb---Y.The Wadi Dabr intrusive complex is analogous to intrusions emplaced in immature ensimatic island-arcs and represents a mixture of mantle (gabbroic rocks) and crustal fusion products (diorites and tonalites) modified by fractional processes.  相似文献   

6.
丁丽雪  黄圭成  夏金龙 《地球科学》2018,43(7):2350-2369
鄂城岩体位于鄂东南地区的最北部,是鄂东南地区的六大岩体之一.在该岩体的南缘接触带上产出了长江中下游地区最大的矽卡岩型铁矿床——程潮铁矿床.众多研究表明,程潮铁矿化与鄂城杂岩体的岩浆演化密切相关,然而目前对于成矿作用究竟是与花岗质岩还是闪长质岩有关仍存在争议.通过对鄂城杂岩体开展系统的锆石U-Pb年代学、元素地球化学和Sr-Nd-Hf同位素研究,结果表明该岩体主要由花岗岩、石英二长岩、花岗斑岩以及小面积的闪长岩组成,最早侵位于140±1 Ma(中粒闪长岩),之后依次侵位形成了细粒闪长岩(132±2 Ma)、花岗斑岩(130±2 Ma)、花岗岩(中细粒花岗岩129±2 Ma,中粒花岗岩129±1 Ma)和石英二长岩(129±1 Ma).根据全岩地球化学特征,鄂城杂岩体的岩石组成大致可以分为两组:(1)花岗岩类,包括花岗岩、花岗斑岩和角闪石英二长岩,钾质,具有高SiO2,低TiO2、FeOt、MnO、MgO含量等特征;(2)闪长岩类,包括中、细粒闪长岩,钠质,具有低SiO2,高TiO2、FeOt、MnO、MgO含量等特征.这些岩石均富集轻稀土元素(LREE)和大离子亲石元素(LILE,如Rb、Th等),亏损高场强元素(HFSE,如Nb、P、Ti)等,且花岗岩类具明显的负Eu异常,而闪长岩类则无此特征.在同位素组成方面,鄂城花岗岩类具有较负的全岩εNd(t)值(-11.7~-10.1)和锆石εHf(t)值(-22.91~-9.83),闪长岩类则具有稍高的全岩εNd(t)值(-7.6)和锆石εHf(t)值(-12.04~-4.69).元素和同位素地球化学特征共同表明,鄂城花岗岩类属于高分异Ⅰ型花岗岩,且主要来源于古元古代基底物质的部分熔融作用,源区可能有少量幔源物质的加入;闪长岩类主要来源于富集岩石圈地幔,且经历了一定的分离结晶作用.年代学结果显示,鄂城花岗岩类和细粒闪长岩的侵位时间均与程潮铁矿床的主成矿期吻合.结合野外接触关系以及前人的研究,程潮铁矿化可能与上述两类岩石均密切相关.从整个鄂东南地区的成矿作用来看,随着岩浆源区壳源物质贡献的增大以及岩浆分异程度的增加,岩浆作用与铁矿化的关系也更加密切.   相似文献   

7.
Early Proterozoic supracrustal and plutonic rocks from the Gold Hill-Wheeler Peak area in northern New Mexico define three populations: amphibolite—diorite—tonalite, hornblendite—cumulus amphibolite and felsic volcanics and porphyries. Also present are mid-Proterozoic granites. Amphibolites are similar in Ti, Zr, Cr, Ni and REE contents to young calc-alkaline and arc basalts and diorites and tonalites are similar in composition to young andesites and to high-Al2O3 tonalites, respectively. Felsic volcanics resemble young felsic volcanics from mature arc systems in their immobile-element contents. Geochemical model studies suggest that the amphibolites, hornblendites, diorites and tonalites are related by progressive fractional crystallization of a hydrous parent tholeiite magma produced from partial melting of undepleted lherzolite. Amphibolites represent parent tholeiites modified by olivine removal. Hornblendite is an early solid residue comprised chiefly of hornblende, clinopyroxene, and olivine; diorite and cumulus amphibolite represent respectively residual solid (clinopyroxene, plagioclase, hornblende) and liquid, after 50% crystallization. Tonalite represents a residual liquid after 80% crystallization. Felsic volcanic rocks are produced by partial melting of a tonalite or diorite source with granulite-facies mineralogy in the lower crust. Granites have a similar origin to felsic volcanics although requiring an inhomogeneous source with the presence of residual hornblende or garnet.The calc-alkaline igneous rocks in the Gold Hill-Wheeler Peak area suggest the presence of an arc system in northern New Mexico during the Early Proterozoic. The fact that these rocks interfinger with and are overlain by mature clastic sediments favors a model in which a continental arc system is uplited, eroded and buried by cratonic sediments from the north.  相似文献   

8.
This paper reports an integrated petrological, geochronological, and isotopic geochemical study of the Pliocene Dzhimara granitoid massif (Greater Caucasus) located in the immediate vicinity of Quaternary Kazbek Volcano. Based on the obtained results, it was suggested that the massif has a multiphase origin, and temporal variations in the chemical composition of its granitoids and their possible sources were determined. Two petrographic types of granitoids, biotite-amphibole and amphibole, were distinguished among the studied rocks of the Dzhimara Massif belonging to the calc-alkaline and K-Na subalkaline petrochemical series. The latter are granodiorites, and the biotite-amphibole granitoids are represented by calc-alkaline granodiorites and quartz diorites and subalkaline quartz diorites. Geochemically, the granitoids of the Dzhimara Massif are of a “mixed” type, showing signatures of S-, I-, A-, and even M-type rocks. Their chemical characteristics suggest a mantle-crustal origin, which is explained by the formation of their parental magmas in a complex geodynamic environment of continental collision associated with a mantle “hot field” regime.
The granitoids of the Dzhimara Massif show wide variations in Sr and Nd isotopic compositions. In the Sr-Nd isotope diagram, their compositions are approximated by a line approaching the mixing curve between the “Common” depleted mantle, which is considered as a potential source of intra-plate basalts, and crustal reservoirs. It was suggested that the mantle source (referred here as “Caucasus”) that contributed to the petrogenesis of the granitoids of the Dzhimara Massif and most other youngest magmatic complexes of the region showed the following isotopic characteristics: 87Sr/86Sr ? 0.7041 ± 0.0001 and
+ 4.1 ± 0.1 at 147Sm/144Nd = 0.105–0.114.
The Middle-Late Pliocene K-Ar ages (3.3–1.9 Ma) obtained for the Dzhimara Massif are close to the ages of granitoids from other Pliocene “neointrusions” of the Greater Caucasus. Based on the geochronological and petrological data, the Dzhimara Massif is formed during four intrusive phases: (1) amphibole granodiorites (3.75–3.65 Ma), (2) Middle Pliocene amphibole-biotite granodiorites and quartz diorites (~3.35 Ma), (3) Late Pliocene amphibole-biotite granodiorites and quartz diorites (~2.5 Ma), and (4) K-Na subalkaline biotite-amphibole quartz diorites (~2.0 Ma).The close spatial association of the Pliocene multiphase Dzhimara Massif and the Quaternary Kazbek volcanic center suggests the existence of a long-lived magmatic system developing in two stages: intrusive and volcanic. Approximately 1.5 Ma after the formation of the Dzhimara Massif (at ca. 400–500 ka), the activity of a deep magma chamber in this area of the Greater Caucasus resumed (possibly with some shift to the east).  相似文献   

9.
李勇  张士贞  李奋其  秦雅东 《地球科学》2020,45(8):2846-2856
目前关于拉萨地块西段狮泉河地区中生代岩浆岩的报道相对较少,限制了对该地区中生代岩浆作用的认识.对狮泉河地区石英闪长岩和闪长质包体的锆石U-Pb年龄、岩石学特征与元素地球化学进行了研究.结果显示,寄主石英闪长岩的年龄为161.1±1.7 Ma,闪长质包体的年龄为159.8±1.6 Ma和157.0±1.3 Ma,两者为同期形成.寄主石英闪长岩为I型准铝质中钾-高钾钙碱性系列岩石,具有富集大离子亲石元素、亏损高场强元素的特征.闪长质包体为准铝质中钾-高钾钙碱性系列岩石.岩石学、地球化学特征研究表明,该套岩石可能与中侏罗世班公湖-怒江特提斯洋南向俯冲有关,班公湖-怒江特提斯洋南向俯冲引起幔源物质发生熔融,上涌的幔源岩浆与拉萨地块古老基底重熔形成的酸性岩浆混合,形成了含闪长质包体的晚侏罗世岩体.   相似文献   

10.
钱兵  张照伟  吕鹏瑞  王亚磊 《地球科学》2018,43(12):4375-4389
牛鼻子梁地区首次发现的高镁闪长岩对于探讨柴北缘地区岩石圈地幔演化历史具有重要意义.为确定该类岩石成因及地球动力学过程,对其开展矿物学、岩石主-微量元素分析、锆石U-Pb定年和Hf同位素分析工作.岩石地球化学特征显示,岩石均为钙碱性岩石,具有富Mg(Mg#=62~72)、Cr、Ni、LREE(LREE/HREE=2.84~4.61)值、低FeOT/MgO(0.70~1.12)比值特征,属于高镁闪长岩;所有样品均表现出富集大离子亲石元素(Rb、Ba、Th、U、K)和LREE,而相对亏损高场强元素Nb、Ta、Ti、P和HREE,与典型的"赞岐岩"地球化学特征一致;锆石U-Pb同位素年代学研究表明岩石形成时代为388 Ma,为中泥盆世岩浆作用的产物.锆石Hf同位素特征显示岩石εHf(t)均为正值(4.4~11.6),表明岩浆起源于亏损地幔.结合区域构造演化过程认为,牛鼻子梁高镁闪长岩是由早古生代(540~520 Ma)消减带流体交代地幔楔后的富集地幔经历晚古生代(400~388 Ma)岩石圈伸展作用部分熔融的产物.   相似文献   

11.
The study area covered by this work is located along the Bir Tawilah fault zone which encompasses the Arabian Shield between Afif terrane and western oceanic terranes. The rocks are dominantly ophiolite assemblages, island arc metavolcanic and metasedimentary rocks, and dioritic to granitic intrusions. The diorite and granodiorite rocks are I-type granitoids, calk-alkaline, metaluminous to peraluminous, formed in a volcanic arc setting, whereas the monzogranite is classified as A-type granite, alkaline and highly fractionated calc-alkaline, generated in within-plate tectonic setting. Nb and Y relationships indicated that the diorites and granodiorites were generated by a mafic parental magma contaminated with crustal materials, and controlled by fractional crystallization, whereas the monzogranites were generated from a magma characterized by an enriched mantle (EM) source.Mineralization including gold is hosted by the carbonatized serpentinite (listvenite) and the syn-tectonic granodiorite along Bir Tawilah thrust zone. U-Pb zircon geochronology indicates that the granodiorite at Jabal Ghadarah is emplaced at ca. 630 ± 12 Ma, probably suggests that the metallic minerals associated with the granodiorite along Bir Tawilah thurst zone are the result of remobilization of pre-existing gold mineralization associated with listevenite that is related to arc accretion.  相似文献   

12.
Modes, total rock chemistry (including a range of trace elements) and mineral analyses are presented for two selected rocks from the Yeoval (Australia) high-K diorite complex. This and other data show that the high-K diorites may definitely be grouped with calc-alkaline rocks and that the high-K diorites and low-Si diorites are almost identical in chemistry to their fine-grained equivalents. Comparisons of the data are made with other similar rock groups. Criticism is made of the presently used mineralogical classification of diorites and in particular of those diorites rich in potassium. A chemical classification of diorites identical to that used for andesites is proposed.  相似文献   

13.
Field relationships, petrography and chemistry (including selected trace elements) of an occurrence of high-K diorite from Yeoval, N.S.W., Australia, are described. The Yeoval diorite complex is a calc-alkaline suite of rocks ranging from gabbros through diorites to granites with an association of fine-grained types. The dominant type of diorite is high in potassium (>2% K2O) and their classification is based mainly on chemical data rather than conventional petrography. As such the high-K diorites may be correlated with the high-K andesites of orogenic regions. Comparisons with occurrences of high-K andesites are made. Data are presented to show that the gabbros and diorites are genetically related whereas no relation between the diorites and granites can be established.  相似文献   

14.
柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学   总被引:10,自引:0,他引:10  
陈宣华 《地质学报》2011,85(2):157-171
柴达木盆地东部是连接秦岭、祁连、昆仑三大造山带的关键构造部位,发育了以晚二叠世-中三叠世(P-T)花岗岩类为主的古特提斯域深成岩浆活动.岩石地球化学分析表明,柴达木盆地东部基底P-T花岗岩类形成于大洋环境,主要为I型花岗岩类.该期花岗岩类可分为两个时间演化系列,早期为钾长花岗岩-花岗闪长岩-英云闪长岩-闪长岩系列,晚期...  相似文献   

15.
曾涛  王涛  童英  张磊  郭磊 《地质通报》2012,31(5):732-744
在俄罗斯远东地区晚中生代花岗岩类年龄和相关地球化学数据的基础上,初步建立了该区晚中生代花岗岩类的年代学格架:大致以145Ma为界,分为侏罗纪(178~151Ma)和早白垩世(142~122Ma)2期。侏罗纪的花岗岩类主要为花岗岩-花岗闪长岩-石英二长岩组合,总体上为准铝质—强过铝质高钾钙碱性系列;早白垩世的花岗岩类主要为花岗岩-石英闪长岩-石英二长岩组合,主要为过铝质钙碱性—高钾钙碱性系列—钾玄岩系列。2期花岗岩稀土元素配分曲线均呈右倾型,重稀土元素曲线较平坦,都富集大离子亲石元素(如U、K)和轻稀土元素。与中国东北地区晚中生代花岗岩类对比,中国东北地区总体以兴安岭为中心,中间为早白垩世的花岗岩类,两侧为侏罗纪花岗岩类对称分布。境内外的侏罗纪花岗岩类构造背景不同,其分布与鄂霍次克洋和太平洋板块的俯冲有关,早白垩世花岗岩类可能形成于鄂霍次克带挤压造山后的伸展垮塌和太平洋板块的俯冲弧后伸展阶段。  相似文献   

16.
The Sidi Flah and Ougnat inliers are located in the eastern Anti-Atlas antiform between the Anti-Atlas Major Fault (AAMF) and South Atlas Fault (SAF). They consist of many granitoid intrusions emplaced into Neoproterozoic metasedimentary rocks and surmounted by upper Neoproterozoic A-type granites. The Sidi Flah (Saghro) and Ougnat granitoids are part of the Neoproterozoic magmatic activity related to northwards subduction of an oceanic plate beneath the Saghro continental margin. They are post-orogenic I- and S-type granitoids related to the ending of the compressional deformation in this Pan-African belt. A petrographic, geochemical and zircon typology study leads us to subdivide these rocks into three magmatic groups: (1) a medium- to high-K calc-alkaline group formed by quartz diorites and amphibole granodiorites is found in both Sidi Flah and Ougnat inliers; (2) a high-K calc-alkaline group is present in Sidi Flah. These two groups have a (deeper and) hybrid mantle-crust origin; (3) a peraluminous group in Ougnat is linked to the post-collisional setting and has a shallow crustal source. On a primitive mantle-normalized trace-element diagram, almost all of these rocks show a significant Nb depletion relative to K and La, which is typical of the calc-alkaline magmatism from the subduction-zone environment. Absence of structural marks of thrusting upon the West African craton (WAC) of this arc system and the ophiolitic suite in Bou-Azzer, and the presence of Imiter muscovite-bearing granite as part of Pan-African belt do not support the localization of northern limit of WAC at the level of SAF.  相似文献   

17.
The Qinling Orogenic Belt (QOB) located between the North China Craton (NCC) and the Yangtze Craton (YZC) is composed of the North Qinling Belt (NQB), the South Qinling Belt (SQB) and the northern margin of the YZC. Detailed geological and geochronological investigations have revealed distinct Neoproterozoic blocks of various scales in the middle and western segments of the SQB, including the Madao block (MDB), Mihunzhen intrusion (MHI), Zhenggou block (ZGB), and Lengshuigou block (LSB) which constitute an east-west trending Neoproterozoic uplift zone of the basement continental blocks. These blocks are mainly composed of four lithological groups. Group #1 consists mainly of diorites in the LSB, the zircons from which yield a weighted mean 206Pb/ 238U age of ca. 941 Ma. Group #2 is chiefly composed of hornblende gabbros and diorites in the MHI and LSB, which were formed at ca. 885 Ma. Group #3 comprises massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites in the MDB, MHI, ZGB and LSB, which were emplaced during ca. 785–740 Ma. Group #4 is composed of hornblende gabbros with an emplacement age of ca. 667 Ma in the ZGB.Detailed whole-rock geochemical and zircon Hf isotopic studies reveal the following: (1) The diorites of Group #1 were produced by partial melting of depleted mantle which was enriched by slab-derived melts, with the parental magmas contaminated by crustal materials. (2) The gabbros of Group #2 were derived from the partial melting of depleted mantle enriched by slab-derived melts and the diorites are the fractional crystallization products of the gabbroic magmas. (3) Group #3 which can be further sub-divided based on lithological assemblages and zircon Hf isotopic features into two subgroups, one representing massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites (DTGMs) and the other composed of gneissic quartz diorites and granodiorites. Among these, the DTGMs were derived through magma mixing between melts derived from the depleted mantle wedge altered by slab-derived fluids and melts from juvenile sources, which subsequently underwent amphibole-dominated fractionation, whereas the gneissic granitoids formed through partial melting of thickened lower crust contaminated by depleted mantle melts. (4) The gabbros of Group #4 originated from a depleted lithospheric mantle that was enriched by slab-derived melts and fluids with contribution of asthenospheric mantle-derived materials. In conjunction with data from previous studies on the Neoproterozoic blocks in the SQB and basement blocks in the northern margin of the YZC, our new geological, geochronological and geochemical data suggest a large Neoproterozoic uplift zone in the SQB, which was destructed by Paleozoic to Mesozoic magmatism and deformation. The Neoproterozoic uplift zone of the SQB might have been separated from the northern margin of the YZC during the formation of the Mianlue Ocean, and might have evolved under an active continental margin setting and subsequent continental rift setting accompanied by significant crustal growth. The magmatism also resulted in the formation of important Neoproterozoic ore deposits and supplied the material sources for some of the major Mesozoic ore deposits.  相似文献   

18.
This paper reports on the occurrence of layered Pan African dioritetonalite-granodiorite (DTG) rocks. The layering is marked by alternation of melanocratic (M) layers (diorites and tonalites) and leucocratic (L) layers (tonalites and granodiorites). M-samples have cumulus biotite+hornblende+relict pyroxene+plagioclase+K-feldspars+magnetite+apatite, and have transitional calc-alkaline and metaluminous affinities. They were derived from subduction-related magma enriched in Rb, Ba, K and LREE and depleted in Sr and Nb. L-samples have cumulus plagioclase+hornblende. They are enriched in Sr and depleted in Rb, Ba, K, Nb and LREE. They have calc-alkaline and peraluminous affinites.
The formation of the rhythmic layers of DTG composition can be attributed to periodical replenishment of pulses of basic magma into a more evolved acidic magma chamber under open system conditions. Field relations, mineralogy and element concentration among the M- and L-layers indicate that at the subduction zone, the ascending magma was contaminated with lower crustal materials (marginal basin metasediments) which led to LILE-enrichment, Nb-depletion and transition from calc-alkaline to alkaline and from metaluminous to peraluminous affinities as well.  相似文献   

19.
This paper presents materials of granitoids from the western Angara-Vitim batholith and the country gneisses and migmatites of the Talanchan Metamorphic Complex. The granitoids of the older intrusive phases of the Barguzin Complex are characterized by high dispersions in the contents of most trace element. The similarities in their trace-element signatures to those of metavolcanics of the Talanchan Group indicate that the latter could have served as a source of the granitoid melts. The increase in the K, Rb, Sn, Be, and REE contents from granitoids of the older phase of the Barguzin Complex to the main phase of this complex and further to the granites of the Zazin Complex is a result of melt fractionation which simultaneously became more uniform and acquired Eu minima. The group of calc-alkaline diorites is identical in composition to the metavolcanics and probably complements the latter. Metagabbro of normal alkalinity and synplutonic subalkali gabbro of the Oshurkov type are distinguished by composition and the relationships with the country gneisses and granitoids.  相似文献   

20.
New data on the age, composition, sources, and formation conditions of the Early Precambrian granitoids of the Batomga inlier of the southeastern Siberian Platform basement are discussed. Geochronological SRHIMP II U–Pb study of the zircons reveals that the calc-alkaline granitoids of the Khoyunda Complex are 2056–2057 Ma in age and their formation was related to the Early Proterozoic stage in the development of the Batomga granite–greenstone domain. It is established that the primary melts for these rocks formed in subduction settings through melting of the depleted mantle source with some contribution of ancient crustal material. In terms of temperature, partial melting followed by crystallization of the granitoids under peak metamorphic conditions corresponds to the transition between amphibolite and granulite facies at elevated pressure; high temperature and high-grade metamorphism are subduction-related phenomena reflected in the back-arc settings of the active continental margin. The protoliths of calc-alkaline metavolcanics of the Batomga Group are found to be chronologically and compositionally analogous to the subduction granitoids of the Khoyunda and Dzhagdakan complexes; i.e., these granitoids are coeval with the Batomga island arc. The lower age limit of the Batomga Group is estimated at 2.2 Ga and its upper age limit is defined by the age of the intruded Khoyunda granitoids. The formation of the rocks of the Batomga Group and associated granitoids of the Khoyunda and Dzhagdakan complexes reflects the formation of the continental crust at the Early Paleoproterozoic stage of the evolution of the Batomga lithosphere block (2.2–2.0 Ga ago).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号