首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The diffusion of water in a peralkaline and a peraluminous rhyolitic melt was investigated at temperatures of 714–1,493 K and pressures of 100 and 500 MPa. At temperatures below 923 K dehydration experiments were performed on glasses containing about 2 wt% H2O t in cold seal pressure vessels. At high temperatures diffusion couples of water-poor (<0.5 wt% H2O t ) and water-rich (~2 wt% H2O t ) melts were run in an internally heated gas pressure vessel. Argon was the pressure medium in both cases. Concentration profiles of hydrous species (OH groups and H2O molecules) were measured along the diffusion direction using near-infrared (NIR) microspectroscopy. The bulk water diffusivity () was derived from profiles of total water () using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between and Both methods consistently indicate that is proportional to in this range of water contents for both bulk compositions, in agreement with previous work on metaluminous rhyolite. The water diffusivity in the peraluminous melts agrees very well with data for metaluminous rhyolites implying that an excess of Al2O3 with respect to alkalis does not affect water diffusion. On the other hand, water diffusion is faster by roughly a factor of two in the peralkaline melt compared to the metaluminous melt. The following expression for the water diffusivity in the peralkaline rhyolite as a function of temperature and pressure was obtained by least-squares fitting:
where is the water diffusivity at 1 wt% H2O t in m2/s, T is the temperature in K and P is the pressure in MPa. The above equation reproduces the experimental data (14 runs in total) with a standard fit error of 0.15 log units. It can be employed to model degassing of peralkaline melts at water contents up to 2 wt%.  相似文献   

2.
Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
$ D_{{{\text{H}}_{ 2} {\text{O}}_{\text{t}} }} = D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} \left( {1 - \frac{0.5 - X}{{\sqrt {[4\exp (3110/T - 1.876) - 1](X - X^{2} ) + 0.25} }}} \right), $
$ {\text{with}}\;D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} = \exp \left[ { - 1 2. 7 8 9- \frac{13939}{T} - 1229.6\frac{P}{T} + ( - 27.867 + \frac{60559}{T})X} \right], $
where D is in m2 s?1, T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as = (C/18.015)/(C/18.015 + (100 ? C)/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H2O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.
  相似文献   

3.
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 to $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 , D values for highly charged elements vary from $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 through $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 and $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 to $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 , and are all virtually independent of temperature. Cr and Co are the only compatible trace elements at the studied conditions. To elucidate charge-balancing mechanisms for incorporation of REE into Opx and to assess the possible influence of Fe on Opx-melt partitioning, we compare our experimental results with computer simulations. In these simulations, we examine major and minor trace element incorporation into the end-members enstatite (Mg2Si2O6) and ferrosilite (Fe2Si2O6). Calculated solution energies show that R2+ cations are more soluble in Opx than R3+ cations of similar size, consistent with experimental partitioning data. In addition, simulations show charge balancing of R3+ cations by coupled substitution with Li+ on the M1 site that is energetically favoured over coupled substitution involving Al–Si exchange on the tetrahedrally coordinated site. We derived best-fit values for ideal ionic radii r 0, maximum partition coefficients D 0, and apparent Young’s moduli E for substitutions onto the Opx M1 and M2 sites. Experimental r 0 values for R3+ substitutions are 0.66–0.67 ? for M1 and 0.82–0.87 ? for M2. Simulations for enstatite result in r 0 = 0.71–0.73 ? for M1 and ~0.79–0.87 ? for M2. Ferrosilite r 0 values are systematically larger by ~0.05 ? for both M1 and M2. The latter is opposite to experimental literature data, which appear to show a slight decrease in $ r_{0}^{{{\text{M}}2}} $ r_{0}^{{{\text{M}}2}} in the presence of Fe. Additional systematic studies in Fe-bearing systems are required to resolve this inconsistency and to develop predictive Opx-melt partitioning models for use in terrestrial and lunar magmatic differentiation models.  相似文献   

4.
Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine   总被引:1,自引:1,他引:0  
The incorporation and diffusion of hydrogen in San Carlos olivine (Fo90) single crystals were studied by performing experiments under hydrothermal conditions. The experiments were carried out either at 1.5 GPa, 1,000°C for 1.5 h in a piston cylinder apparatus or at 0.2 GPa, 900°C for 1 or 20 h in a cold-seal vessel. The oxygen fugacity was buffered using Ni–NiO, and the silica activity was buffered by adding San Carlos orthopyroxene powders. Polarized Fourier transform infrared (FTIR) spectroscopy was utilized to quantify the hydroxyl distributions in the samples after the experiments. The resulting infrared spectra reproduce the features of FTIR spectra that are observed in olivine from common mantle peridotite xenoliths. The hydrogen concentration at the edges of the hydrogenated olivine crystals corresponds to concentration levels calculated from published water solubility laws. Hydrogen diffusivities were determined for the three crystallographic axes from profiles of water content as a function of position. The chemical diffusion coefficients are comparable to those previously reported for natural iron-bearing olivine. At high temperature, hydrogenation is dominated by coupled diffusion of protons and octahedrally coordinated metal vacancies where the vacancy diffusion rate limits the process. From the experimental data, we determined the following diffusion laws (diffusivity in m2 s−1, activation energies in kJ mol−1): for diffusion along [100] and [010]; for diffusion along [001]. These diffusion rates are fast enough to modify significantly water contents within olivine grains in xenoliths ascending from the mantle.  相似文献   

5.
The effective binary diffusion coefficient (EBDC) of silicon has been measured during the interdiffusion of peralkaline, fluorine-bearing (1.3 wt% F), hydrous (3.3 and 6 wt% H2O), dacitic and rhyolitic melts at 1.0 GPa and temperatures between 1100°C and 1400°C. From Boltzmann-Matano analysis of diffusion profiles the diffusivity of silicon at 68 wt% SiO2 can be described by the following Arrhenius equations (with standard errors): $$\begin{gathered} {\text{with 1}}{\text{.3 wt\% F and 3}}{\text{.3\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.66}} \times {\text{10}}^{ - {\text{9}}} } \\ { - {\text{1}}{\text{.86}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ {\text{with 1}}{\text{.3 wt\% F and 6}}{\text{.0\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.51}} \times {\text{10}}^{ - {\text{8}}} } \\ { - {\text{1}}{\text{.77}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ \end{gathered} $$ where D is in m2s?1 and activation energies are in kJ/mol. Diffusivities measured at 64 and 72 wt% SiO2 are only slightly different from those at 68 wt% SiO2 and frequently all measurements are within error of each other. Silicon, aluminum, iron, magnesium, and calcium EBDCs were also calculated from diffusion profiles by error function inversion techniques assuming constant diffusivity. With one exception, silicon EBDCs calculated by error function techniques are within error of Boltzmann-Matano EBDCs. Average diffusivities of Fe, Mg, and Ca were within a factor of 2.5 of silicon diffusivities whereas Al diffusivities were approximately half those of silicon. Alkalies diffused much more rapidly than silicon and non-alkalies, however their diffusivities were not quantitatively determined. Low activation energies for silicon EBDCs result in rapid diffusion at magmatic temperatures. Assuming that water and fluorine exert similar effects on melt viscosity at high temperatures, the viscosity can be calculated and used in the Eyring equation used to determine diffusivities, typically to within a factor of three of those measured in this study. This correlation between viscosity and diffusivity can be inverted to calculate viscosities of fluorine- and water-bearing granitic melts at magmatic temperatures; these viscosities are orders of magnitude below those of hydrous granitic melts and result in more rapid and effective separation of granitic magmas from partially molten source rocks. Comparison of Arrhenius parameters for diffusion measured in this study with Arrhenius parameters determined for diffusion in similar compositions at the same pressure demonstrates simple relationships between Arrhenius parameters, activation energy-Ea, kJ/mol, pre-exponential factor-Do, m2s?1, and the volatile, X=F or OH?, to oxygen, O, ratio of the melt {(X/X+O)}: $$\begin{gathered} {\text{E}}a = - {\text{1533\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }} + {\text{213}}{\text{.3}} \hfill \\ {\text{D}}_{\text{O}} = {\text{2}}{\text{.13}} \times {\text{10}}^{ - {\text{6}}} {\text{exp}}\left[ { - {\text{6}}{\text{.5\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }}} \right] \hfill \\ \end{gathered} $$ These relationships can be used to estimate diffusion in various melts of dacitic to rhyolitic composition containing both fluorine and water. Calculations for the contamination of rhyolitic melts by dacitic enclaves at 800°C and 700°C provide evidence for the virtual inevitability of diffusive contamination in hydrous and fluorine-bearing magmas if they undergo magma mixing of any form.  相似文献   

6.
The onset of hydrous partial melting in the mantle above the transition zone is dictated by the H2O storage capacity of peridotite, which is defined as the maximum concentration that the solid assemblage can store at P and T without stabilizing a hydrous fluid or melt. H2O storage capacities of minerals in simple systems do not adequately constrain the peridotite water storage capacity because simpler systems do not account for enhanced hydrous melt stability and reduced H2O activity facilitated by the additional components of multiply saturated peridotite. In this study, we determine peridotite-saturated olivine and pyroxene water storage capacities at 10–13 GPa and 1,350–1,450°C by employing layered experiments, in which the bottom ~2/3 of the capsule consists of hydrated KLB-1 oxide analog peridotite and the top ~1/3 of the capsule is a nearly monomineralic layer of hydrated Mg# 89.6 olivine. This method facilitates the growth of ~200-μm olivine crystals, as well as accessory low-Ca pyroxenes up to ~50 μm in diameter. The presence of small amounts of hydrous melt ensures that crystalline phases have maximal H2O contents possible, while in equilibrium with the full peridotite assemblage (melt + ol + pyx + gt). At 12 GPa, olivine and pyroxene water storage capacities decrease from ~1,000 to 650 ppm, and ~1,400 to 1,100 ppm, respectively, as temperature increases from 1,350 to 1,450°C. Combining our results with those from a companion study at 5–8 GPa (Ardia et al., in prep.) at 1,450°C, the olivine water storage capacity increases linearly with increasing pressure and is defined by the relation C\textH2 \textO\textolivine ( \textppm ) = 57.6( ±16 ) ×P( \textGPa ) - 169( ±18 ). C_{{{\text{H}}_{2} {\text{O}}}}^{\text{olivine}} \left( {\text{ppm}} \right) = 57.6\left( { \pm 16} \right) \times P\left( {\text{GPa}} \right) - 169\left( { \pm 18} \right). Adjustment of this trend for small increases in temperature along the mantle geotherm, combined with experimental determinations of D\textH2 \textO\textpyx/olivine D_{{{\text{H}}_{2} {\text{O}}}}^{\text{pyx/olivine}} from this study and estimates of D\textH2 \textO\textgt/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{gt}}/{\text{olivine}}}} , allows for estimation of peridotite H2O storage capacity, which is 440 ± 200 ppm at 400 km. This suggests that MORB source upper mantle, which contains 50–200 ppm bulk H2O, is not wet enough to incite a global melt layer above the 410-km discontinuity. However, OIB source mantle and residues of subducted slabs, which contain 300–1,000 ppm bulk H2O, can exceed the peridotite H2O storage capacity and incite localized hydrous partial melting in the deep upper mantle. Experimentally determined values of D\textH2 \textO\textpyx/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{pyx}}/{\text{olivine}}}} at 10–13 GPa have a narrow range of 1.35 ± 0.13, meaning that olivine is probably the most important host of H2O in the deep upper mantle. The increase in hydration of olivine with depth in the upper mantle may have significant influence on viscosity and other transport properties.  相似文献   

7.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

8.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

9.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   

10.
We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, \(D_{\text{Ni}}^{\text{ol/liq}}\). Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite–Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that \(D_{\text{Ni}}^{\text{ol/liq}}\) for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni–Mg exchange reaction, which yields \(\ln \left( {D_{\text{Ni}}^{\text{molar}} } \right) = \frac{{ -\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{RT} + \frac{{\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } }}{R} - \ln \left( {\frac{{X_{\text{MgO}}^{\text{liq}} }}{{X_{{{\text{MgSi}}_{ 0. 5} {\text{O}}_{ 2} }}^{\text{ol}} }}} \right).\) Each subset of constant composition experiments displays roughly the same temperature dependence of \(D_{\text{Ni}}^{\text{ol/liq}}\) (i.e.,\(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\)) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 3641 ± 396 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 1.597 ± 0.229. Adding data from the literature yields \(-\Delta _{r(1)} H_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = 4505 ± 196 (K) and \(\Delta _{r(1)} S_{{T_{\text{ref}} ,P_{\text{ref}} }}^{ \circ } /R\) = ? 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for \(D_{\text{Ni}}^{\text{ol/liq}}\) applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric thickness is expected given a temperature-dependent \(D_{\text{Ni}}^{\text{ol/liq}} ,\) and (2) the magnitude of the slope for natural samples is consistent with our experimentally determined temperature dependence. Alternative processes to generate the positive correlation between NiO in magnesian olivines and lithospheric thickness, such as the melting of olivine-free pyroxenite, are possible, but they are not required to explain the observed correlation of NiO concentration in initially crystallizing olivine with lithospheric thickness.  相似文献   

11.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

12.
Trace element analyses of 1-atm and high-pressure experiments show that in komatiite and peridotite, the olivine (OL)/liquid (L) distribution coefficient for Al2O3 ( ) increases with pressure and temperature. Olivine in equilibrium with liquid accepts as much as 0.2 wt% Al2O3 in solution at 6 GPa. Convergence to equilibrium compositions at this high level is shown by cation diffusion of Al into synthetic forsterite crystals of low-Al contents in the presence of melt. Convergence to low-Al equilibrium compositions at lower P and T is shown by diffusion of Al out of synthetic forsterite with high initial Al content. Isobaric and isothermal experimental data subsets reveal that temperature and pressure variations both have real effects on . Variation in silicate melt composition has no detectable effect on within the limited range of experimentally investigated mixtures. Least-squares regression for 24 experiments, using komatiite and peridotite, performed at 1 atm to 6 GPa and 1300 to 1960°C, gives the best fit equation: Increase in with increasingly higher-pressure melting is consistent with incorporation of a spinel-like component of low molar volume into olivine, although other substitutions possibly involving more complex coupling cannot be ruled out. High P-T ultrabasic melting residues, if pristine, may be recognized by the high calculated from microprobe analyses of Al2O3 concentrations in residual olivines and estimated Al2O3 concentration in the last liquid removed. In general the low levels of Al in natural olivine from mantle xenoliths suggest that pristine residues are rarely recovered.  相似文献   

13.
The carbon dioxide solubility in alkali basalts: an experimental study   总被引:1,自引:1,他引:0  
Experiments were conducted to determine CO2 solubilities in alkali basalts from Vesuvius, Etna and Stromboli volcanoes. The basaltic melts were equilibrated with nearly pure CO2 at 1,200°C under oxidizing conditions and at pressures ranging from 269 to 2,060 bars. CO2 solubility was determined by FTIR measurements. The results show that alkalis have a strong effect on the CO2 solubility and confirm and refine the relationship between the compositional parameter Π devised by Dixon (Am Mineral 82:368–378, 1997) and the CO2 solubility. A general thermodynamic model for CO2 solubility in basaltic melts is defined for pressures up to 2 kbars. Based on the assumption that O2− and CO32− mix ideally, we have:
_boxclose_3^2 - ^m (P,T)X_^2 - ^m f__2 (P,T) K(P,T) = X__3^2 - ^m (P,T) ( X_^2 - ^m f__2 (P,T) ). \begin{gathered} K(P,T) = {\frac{{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)}}{{X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)}}} \hfill \\ K(P,T) = {{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)} \mathord{\left/ {\vphantom {{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)} {\left( {X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)} \right).}}} \right. \kern-\nulldelimiterspace} {\left( {X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)} \right).}} \hfill \\ \end{gathered}  相似文献   

14.
Oxygen diffusion in albite has been determined by the integrating (bulk 18O) method between 750° and 450° C, for a P H2O of 2 kb. The original material has a low dislocation density (<106 cm?2), and its lattice diffusion coefficient (D 1), given below, agrees well with previous determinations. A sample was deformed at high temperature and pressure to produce a uniform dislocation density of 5 × 109 cm?2. The diffusion coefficient (D a) for this deformed material, given below, is about 0.5 and 0.7 orders of magnitude larger than D 1 at 700° and 450° C, respectively. This enhancement is believed due to faster diffusion along the cores of dislocations. Assuming a dislocation core radius of 4 Å, the calculated pipe diffusion coefficient (D p), given below, is about 5 orders of magnitude larger than D 1. These results suggest that volume diffusion at metamorphic conditions may be only slightly enhanced by the presence of dislocations. $$\begin{gathered} D_1 = 9.8 \pm 6.9 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 33.4 \pm 0.6(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_a = 7.6 \pm 4.0 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 30.9 \pm 1.1(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_p \approx 1.2 \times 10^{ - 1} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 29.8(kcal/mole)/RT]. \hfill \\ \end{gathered} $$   相似文献   

15.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

16.
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium–aluminum-rich inclusions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can constrain the melt’s isotopic compositions. However, equilibrium α is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt–vapor systems based on first-principles molecular dynamics and the high-temperature approximation of the Bigeleisen–Mayer equation. We found that, at 2500 K, δ25Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141?±?0.004 and 0.143?±?0.003‰ more positive than in their respective vapors. The corresponding δ26Mg values were 0.270?±?0.008 and 0.274?±?0.006‰ more positive than in vapors, respectively. The general \(\alpha - T\) equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt–vapor systems were: \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.264 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\) and \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.340 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\), respectively, where m is the mass of light isotope 24Mg and m′ is the mass of the heavier isotope, 25Mg or 26Mg. These results offer a necessary parameter for mechanistic understanding of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.  相似文献   

17.
In the course of a thorough study of the influences of the second coordination sphere on the crystal field parameters of the 3d N -ions and the character of 3d N –O bonds in oxygen based minerals, 19 natural Cr3+-bearing (Mg,Ca)-garnets from upper mantle rocks were analysed and studied by electronic absorption spectroscopy, EAS. The garnets had compositions with populations of the [8] X-sites by 0.881 ± 0.053 (Ca + Mg) and changing Ca-fractions in the range 0.020 ≤ w Ca[8] ≤ 0.745, while the [6] Y-site fraction was constant with x Cr3+ [6] = 0.335 ± 0.023. The garnets had colours from deeply violet-red for low Ca-contents (up to x Ca = 0.28), grey with 0.28 ≤ x Ca ≤ 0.4 and green with 0.4 ≤ x Ca. The crystal field parameter of octahedral Cr3+ 10Dq decreases strongly on increasing Ca-fraction from 17,850 cm−1 at x Ca[8] = 0.020 to 16,580 cm−1 at x Ca[8] = 0.745. The data could be fit with two model which do statistically not differ: (1) two linear functions with a discontinuity close to x Ca[8] ≈ 0.3,
(2) one continuous second order function,
The behaviour of the crystal field parameter 10Dq and band widths on changing Ca-contents favour the first model, which is interpreted tentatively by different influences of Ca in the structure above and below x Ca[8] ≈ 0.3. The covalency of the Cr–O bond as reflected in the behaviour of the nephelauxetic ratio decreases on increasing Ca-contents.  相似文献   

18.
19.
Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth’s mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280?°C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F–Cl–Br–I–H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DCl ol/melt = 1.6?±?0.9 × 10?4) to 0.33 (6) wt% H2O (DCl ol/melt = 2.2?±?1.1 × 10?4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65–78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F–Cl–Br–I–H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280?°C and 0.3 GPa with (R 2?=?0.99): \(D_{F}^{\text{ol/melt}}\ =\ 3.6\pm 0.4\ \times \ {{10}^{-3}}\ \times \ {{X}_{{{\text{H}}_{\text{2}}}\text{O}}}\left( \text{wt }\!\!\%\!\!\text{ } \right)\ +\ 6\ \pm \ 0.4\times \,{{10}^{-4}}\). The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287–295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65–78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth’s mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.  相似文献   

20.
Opening and resetting temperatures in heating geochronological systems   总被引:2,自引:0,他引:2  
We present a theoretical model for diffusive daughter isotope loss in radiochronological systems with increasing temperature. It complements previous thermochronological models, which focused on cooling, and allows for testing opening and resetting of radiochronometers during heating. The opening and resetting temperatures are, respectively,
where R is the gas constant, E and D 0 are the activation energy and the pre-exponential factor of the Arrhenius law for diffusion of the daughter isotope, a the half-size of the system (radius for sphere and cylinder and half-thickness for plane sheet) and τ the heating time constant, related to the heating rate by
For opening and resetting thresholds corresponding to 1 and 99% loss of daughter isotope, respectively, the retention parameters for sphere, cylinder and plane sheet geometries are A op = 1.14 × 105, 5.07 × 104 and 1.27 × 104 and A rs = 2.40, 1.37 and 0.561. According to this model, the opening and resetting temperatures are significantly different for most radiochronometers and are, respectively, lower and higher than the closure temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号