首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure–temperature–time (P–T–t) pathsof orogenic granulites provide important information on thethermal and chemical structure of the lower continental crustthrough time, and constraints on tectonic processes. We presentthe first detailed petrological investigation of granulitesfrom the Variscan Schwarzwald. Pelitic granulites from the CentralSchwarzwald Gneiss Complex (CSGC) are characterized by the peakassemblage garnet + rutile + kyanite + antiperthite ±quartz. Felsic to intermediate granulites from the SouthernSchwarzwald Gneiss Complex (SSGC) exhibit different peak assemblageswith clinopyroxene, orthopyroxene, ternary feldspar, garnet,quartz and sillimanite, and manifold retrograde reaction textures.Peak P–T conditions were calculated by two-feldspar thermometry,garnet–orthopyroxene thermometry and various geobarometers.Minimum estimates for peak conditions are 950–1010°Cand 1·4–1·8 GPa for the granulites of theCSGC, which followed a clockwiseP–T path. The retrogradepath is characterized by initial isothermal decompression, associatedwith partial melting, followed by isobaric cooling. Peak conditionsfor the SSGC are 1015°C and 1·5 GPa (minimum temperature,maximum pressure). No prograde relics are preserved, and isothermaldecompression was less pronounced than in the CSGC. Other VariscanHP–HT granulites from Central Europe show similar lithologies,equilibration temperatures and ages (340–335 Ma). Theheat for widespread high-temperature metamorphism in the Variscanlower crust could have been supplied by repeated intrusion ofsubduction-related basic magmas. Rapid, near-isothermal decompressionof the granulites may have been facilitated by considerablevolumes of partial melt and by orogenic extension. KEY WORDS: granulites; near-isothermal decompression; two-feldspar thermometry; HT metamorphism; Variscan Schwarzwald  相似文献   

2.
This study assesses temperatures of formation of common granulitesby combining experimental constraints on the P–T stabilityof granulite-facies mineral associations with a garnet–orthopyroxene(Grt–Opx) thermobarometry scheme based on Al-solubilityin Opx, corrected for late Fe–Mg exchange. We appliedthis scheme to 414 granulites of mafic, intermediate and aluminousbulk compositions. Our findings suggest that granulites aremuch hotter than traditionally assumed and that the P–Tconditions of the amphibolite–granulite transition portrayedin current petrology textbooks are significant underestimatesby over 100°C. For aluminous and intermediate granulites,mean corrected temperatures based on our method are 890 ±17 and 841 ± 11°C, respectively (uncertainties reportedas 95% confidence limits on the mean), consistent with minimumtemperatures for orthopyroxene production by fluid-absent partialmelting in these bulk compositions. In contrast, mean temperaturesbased on Grt–Opx Fe–Mg exchange equilibria, usingthe same thermodynamic data, are 732 ± 22 and 723 ±11°C, respectively, well below the minimum temperaturesfor Opx stability. For mafic granulites, the mean correctedtemperature using our method is 816 ± 12°C, similarto the mean temperature of 793 ± 13°C from Fe–Mgexchange. Reasons for the differences between the mafic granulitesand aluminous–intermediate granulites are unclear butmay be due to the lower Al concentrations in Opx in the maficrocks and possible deficiencies in the thermodynamic modellingof these low concentrations. We discuss a number of well-knowngranulite terrains in the context of our findings, includingthe Adirondacks, the Acadian granulites of New England, theincipient charnockites of southern India and Sri Lanka, andthe Kerala Khondalite Belt. Our findings carry implicationsfor thermotectonic models of granulite formation. A computerprogram to perform our thermobarometry calculations, RCLC, isavailable from the Journal of Petrology website at http://www.petrology.oupjournals.orgor from the authors at http://www.geo.ucalgary.ca/~pattison/drm_pattison-rclc.htm. KEY WORDS: granulite-facies metamorphism; thermobarometry; garnet; orthopyroxene  相似文献   

3.
The granulites of the Saxon Granulite Massif equilibrated athigh pressure and ultrahigh temperature and were exhumed inlarge part under near-isothermal decompression. This raisesthe question of whether P–T–t data on the peak metamorphismmay still be retrieved with confidence. Felsic and mafic granuliteswith geochronologically useful major and accessory phases haveprovided a basis to relate P–T estimates with isotopicages presented in a companion paper. The assemblage garnet +clinopyroxene in mafic granulite records peak temperatures of1010–1060°C, consistent with minimum estimates ofaround 967°C and 22·3 kbar obtained from the assemblagegarnet + kyanite + ternary feldspar + quartz in felsic granulite.Multiple partial overprint of these assemblages reflects a clockwiseP–T evolution. Garnet and kyanite in the felsic granulitewere successively overgrown by plagioclase, spinel + plagioclase,sapphirine + plagioclase, and biotite + plagioclase. Most ofthis overprinting occurred within the stability field of sillimanite.Garnet + clinopyroxene in the mafic granulite were replacedby clinopyroxene + amphibole + plagioclase + magnetite. Thehigh P–T conditions and the absence of thermal relaxationfeatures in these granulites require a short-lived metamorphismwith rapid exhumation. The ages of peak metamorphism (342 Ma)and shallow-level granitoid intrusions (333 Ma) constrain thetime span for the exhumation of the Saxon granulites to  相似文献   

4.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

5.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

6.
The spinel lherzolite massif at Balmuccia, northwest Italy,forms an elongate north-south trending lens (4.5 x 0.5 x 1.1km) within the pre-Alpine granulite basement complex of theIvrea zone. The western contact is a mylonite fault zone formedduring late emplacement cataclastic flow near the Insubric line;to the east the lherzolite massif is separated from the granulitesby a magmatic sheath of layered pyroxenites, pyroxene pegmatitesand meta-gabbros. Pyroxene reaction zones on gabbro dikes indunite pods which lie east of the main lherzolite massif showthat emplacement occurred at pressures >9 kb, based on peridotiteequilibria studies. Phase chemistry calculations on pyroxenitesand granulites show ambient P–T conditions to have been850 °C (Cpx–Opx equilibria) and 10–13 kb (Opx–Gt;Plg–Gt–Sill–Qtz) during emplacement of thelherzolite massif. Temperature calculations on 12 peridotitesfrom throughout the massif suggest an earlier high-T stage (1200°C; Ol–Px–Sp) followed by partial re-equilibrationat lower T (850–950 °C; Cpx–Opx). The areaswithin the lherzolite massif with the highest calculated Ol–Px–Sptemperatures have the lowest Cpx–Opx temperatures, suggestingthat the apparent Cpx–Opx temperatures are due to re-equilibrationduring emplacement. The spinel lherzolite probably originatedat 12 and 20 kb, based on the mineral assemblage Ol + Opx +Cpx + Sp + Hnbd. The inferred P–T ranges put both themassif and the granulites on a geotherm that is high for continentalcrust and implies a high surface heat flow at the time of emplacement(2.2 µcal/cm2 sec). The Balmuccia area later became thelocus of early Mesozoic rifting between the North and SouthAlpine plates. These relationships at Balmuccia are similarto the Great Basin of the western United States, where mantlexenoliths in young basalts that show P–T conditions of1100–1300 °C at 17–20 kb, occur in an area ofhigh heat flow (2.0 µCal/cm2 sec average) and extension.This suggests an association between up-welling of mantle peridotitesbelow continents and ensialic tensional tectonics.  相似文献   

7.
GOSCOMBE  BEN 《Journal of Petrology》1992,33(4):917-962
The poly-metamorphic evolution of the Strangways Range granulitesof central Australia has been constrained by the phase stabilityrelationships of silica-saturated aluminous gneisses in KFMASH,in conjunction with geothermobarometry and equilibrium thermodynamics.Two contrasting, but overlapping, P-T paths are proposed. Thefirst (M1, at 1800 Ma) had an ‘anticlockwise’ P-Tpath (i.e., increasing P/T with time) and was terminated byisobaric cooling from 850–950 C, at 8–9 kb, toa stable crustal geotherm (<700C). In contrast, the secondgranulite metamorphism (M2–M5, suggested to be at 1400–1500Ma; Goscombe, 1992a) followed a ‘clockwise’ P-Tpath(i.e., decreasing P/T with time) terminated by decompressionand cooling to {small tilde}6–7 kb on a stable crustalgeotherm. M2–M5 occurred during reworking of M, granulitesby compressional orogenesis (Goscombe, 1992a). Initially, loadingand prograde metamorphism accompanied non-coaxial ductile shearand fold repetition (D2–D3). Prograde metamorphism wasfollowed by uplift and retrogression accompanying oblique transpressionand shear zone development while still under compression (D4–D5)(Goscombe, 1992a). The poly-metamorphic evolution indicatesthat ductile deformation reworked the M1 granulites in an orogenicepisode unrelated, both temporally and tectonically, to M1,metamorphism (Goscombe, 1992b).  相似文献   

8.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

9.
High-pressure granulites are exposed in the Casares-Los Reales group (internal zones of Betic-Rif belt, S Spain–N Morocco) as part of the crustal envelope of Beni Bousera-Ronda Peridotites. They are mostly metapelitic but include intercalations of mafic composition. The metamorphic history is marked by the preservation of early high-pressure assemblages together with secondary low-pressure assemblages suggesting a state of textural and compositional disequilibrium. The P–T path constrained by geothermobarometry and reaction textures from mafic and pelitic lithotypes passes from 800 °C/15 kbar to 600 °C/5 kbar, to indicating a strong decompression related to cooling, followed by a near-isobaric cooling 430 °C and 4 kbar. Such P–T evolution of granulites is thought to reflect some sort of rapid tectonic collapse of crust previously thickened through collision.  相似文献   

10.
The Liov Granulite Massif differs from neighbouring granulitebodies in the Moldanubian Zone of southern Bohemia (Czech Republic)in including a higher proportion of intermediate–maficand orthopyroxene-bearing rocks, associated with spinel peridotitesbut lacking eclogites. In addition to dominantly felsic garnetgranulites, other major rock types include quartz dioritic two-pyroxenegranulites, tonalitic granulites and charnockites. Minor bodiesof high-pressure layered gabbroic garnet granulites and spinelperidotites represent tectonically incorporated foreign elements.The protoliths of the mafic–intermediate granulites (quartz-dioriticand tonalitic) crystallized 360–370 Ma ago, as indicatedby laser ablation inductively coupled plasma mass spectrometryU–Pb ages of abundant zircons with well-preserved magmaticzoning. Strongly metamorphically recrystallized zircons giveages of 330–340 Ma, similar to those of other Moldanubiangranulites. For the overwhelming majority of the Liov granulitespeak metamorphic conditions probably did not exceed 800–900°Cat 4–5 kbar; the equilibration temperature of the pyroxenegranulites was 670–770°C. This is in sharp contrastto conditions of adjacent contemporaneous Moldanubian granulites,which are characterized by a distinct HP–HT signature.The mafic–intermediate Liov granulites are thought tohave originated during Viséan metamorphic overprintingof metaluminous, medium-K calc-alkaline plutonic rocks thatformed the mid-crustal root of a Late Devonian magmatic arc.The protolith resembled contemporaneous calc-alkaline intrusionsin the European Variscan Belt. KEY WORDS: low-pressure granulites; geothermobarometry; laser-ablation ICP-MS zircon dating; whole-rock geochemistry; Sr–Nd isotopes; Moldanubian Zone  相似文献   

11.
The role of clinopyroxene in producing grandite garnet is evaluatedusing data from an ultrahigh-temperature metamorphosed calc-silicategranulite occurrence in the Eastern Ghats Belt, India. ‘Peak’pressure–temperature conditions of metamorphism were previouslyconstrained from associated high Mg–Al granulites as c.0·9 GPa, >950°C, and the rocks were near-isobaricallycooled to c. 750°C. Grandite garnet of variable compositionwas produced by a number of reactions involving phases suchas clinopyroxene, scapolite, plagioclase, wollastonite and calcite,in closely spaced domains. Compositional heterogeneity is preservedeven on a microscale. This precludes pervasive fluid fluxingduring either the peak or the retrograde stage of metamorphism,and is further corroborated by computation of fluid–rockratios. With the help of detailed textural and mineral compositionalstudies leading to formulation of balanced reactions, and usingan internally consistent thermodynamic dataset and relevantactivity–composition relationships, new petrogenetic gridsare developed involving clinopyroxene in the system CaO–Al2O3–FeO–SiO2–CO2–O2in TaCO2fO2 space to demonstrate the importanceof these factors in the formation of grandite garnet. Two singularcompositions in garnet-producing reactions in this system arededuced, which explain apparently anomalous textural relations.The possible role of an esseneite component in clinopyroxenein the production of grandite garnet is evaluated. It is concludedthat temperature and fO2 are the most crucial variables controllinggarnet composition in calc-silicate granulites. fO2, however,behaves as a dependent variable of CO2 in the fluid phase. Externalfluid fluxing of any composition is not necessary to producechemical heterogeneity of garnet solid solution. KEY WORDS: grandite garnet; role of clinopyroxene; internal buffering; oxidation–decarbonation equilibria  相似文献   

12.
ZEH  A. 《Journal of Petrology》2006,47(12):2335-2356
A mathematical approach is presented for the calculation ofthe major and trace element fractionation that is caused bygrowth of zoned garnet in metamorphic rocks. This approach isbased on textural and compositional parameters directly obtainedfrom natural examples. It takes into account the mode and compositionof all unzoned minerals, as well as the mode, crystal size distributionand zonation patterns of garnet grains of different sizes withina certain rock volume. These parameters can be used to fit functionsfrom which the amount of garnet fractionation at each step ofa garnet growth history can be calculated. The approach is testedfor two compositionally distinct domains within a single garnet–biotitegneiss sample from the Ruhla Crystalline Complex. This samplecontains unusual flat-top garnet grains with Y2O3-rich cores.It is shown that MnO, FeO and Y2O3 are extremely fractionatedduring garnet growth, but in different ways, and that MnO fractionationdoes not obey a Rayleigh function. To demonstrate the influenceof garnet fractionation on P–T path estimates, quantitativephase diagrams in the model system Na2O–K2O–CaO–MnO–FeO–MgO–Al2O3–TiO2–SiO2–H2Oare constructed by means of the computer software THERMOCALC.The good agreement between calculated and observed mineral assemblagesand garnet compositions for all fractionation steps indicatesthat the new approach can be used to infer detailed P–Tpaths, even for rocks that contain complexly zoned garnet grains.The results indicate that garnet growth in the metapelite underinvestigation occurred along a linear P–T path from 470°Cand 2·7 kbar to 580°C and 8·5 kbar. The resultsalso show that garnet cores with high Y2O3 contents of about1 wt % nucleated over a temperature interval of c. 90°C,indicating that Y in garnet is relatively insensitive to temperaturechanges. KEY WORDS: garnet; fractionation; pseudosection; yttrium; THERMOCALC  相似文献   

13.
The Hwacheon granulite complex (HGC), occupying the northeasternmargin of the Gyeonggi massif, consists mainly of garnetiferousleucocratic gneiss and leucogranite together with minor kyanite–garnetgneiss, aluminous gneiss, mafic granulite and garnet amphibolite.Mineral assemblages and reaction textures in various rock typesof the HGC document five distinct metamorphic stages: pre- (M1)and peak (M2) granulite-facies metamorphism; lower temperature,high (M3) and low (M4) pressure upper amphibolite-facies metamorphism;and local retrogression (M5) producing andalusite-bearing assemblages.Each metamorphic stage can be integrated to give a compositeP–T path consisting of two distinct trajectories, characterizedby clockwise P–T loops at relatively high and low temperatures,respectively. The first P–T trajectory (M1–M3) correspondsto a Palaeoproterozoic tectonometamorphic event responsiblefor the formation of the granulite complex at  相似文献   

14.
Magmatic accretion is potentially an important mechanism inthe growth of the continental crust and the formation of granulites.In this study, the thermal evolution of a magmatic arc in responseto magmatic accretion is modeled using numerical solutions ofthe one-dimensional heat conduction equation. The initial andboundary conditions used in the model are constrained by geologicalobservations made in the Kohistan area, NW Himalayas. Takingconsideration of the preferred intrusion locations for basalticmagmas, we consider two plausible modes of magmatic accretion:the first involves the repeated intrusion of basalt at mid-crustaldepths (‘intraplate model’), and the second evaluatesthe simultaneous intrusion of basalt and picrite at mid-crustaldepths and the base of the crust respectively (‘double-platemodel’). The results of the double-plate model accountfor both the inferred metamorphic PT paths of the Kohistanmafic granulites and the continental geotherm determined frompeak PT conditions observed for granulite terranes. Thedouble-plate model may be applicable as a key growth processfor the production of thick mafic lower crust in magmatic arcs. KEY WORDS: thermal model; magmatic underplating; PT path; granulite; lower crust  相似文献   

15.
The Kadunguri Whiteschists are a group of talc- and kyanite-bearinglithologies that occur in the Chewore Inliers from the ZambeziBelt of northern Zimbabwe. They crop out on the southern marginof the Chewore Ophiolite Terrane, a Mesoproterozoic ophioliteand island arc, as a 5 km x 1·5 km, southeasterly dipping,semi-continuous block, and contain the second known naturaloccurrence of yoderite. Major element analyses define the whiteschistswithin the relatively simple MFASH system. Major and trace elementanalyses indicate that the whiteschists originate from the metasomaticalteration of alkalic ocean-island-type metabasalts similarto those in the underlying Ophiolite Terrane. Synmetamorphicor metasomatic mineral parageneses indicate peak P–T conditionsof between 13 and 15 kbar at 550–600°C, and the highlyoxidizing nature of all reactions indicates the presence ofa high fO2 metasomatic fluid. The peak P–T conditionsrequire that this synmetamorphic, exotic metasomatic fluid wasavailable at depths near 55 km. The age of high-pressure metamorphismis constrained within the Pan African tectonothermal cycle at550–520 Ma. Tectonometamorphism in the Zambezi Belt isrelated to a period of extensive crustal thickening possiblyrelated to amalgamation of Gondwanaland. KEY WORDS: Congo Craton; high pressure; Kalahari Craton; metasomatism; whiteschist; Zambezi Belt  相似文献   

16.
Early Proterozoic cordierite-garnet–orthopyroxene–K–feldsparmetasedimentary gneisses are developed in the flat—lyingcomplex (FLC) of the southern part of the Ketilidian mobilebelt (1?8–1?7GA), Greenland. These granulites containlow—pressure assemblages and are developed in both regionalmetamorphic rocks and in some thermal aureoles of contemporaneousrapakivi granite plutons. Thermobarometry shows that both theregional and contact metamorphism took place at 2–4 kband 650–800?C. The granulites were developed in an extensionaltectonic regime, and appartently record the culmination of asingle thermotectonic event. There is a close temporal associationbetween the peak of high—grade metamorphism and the emplacementof synorogenic rapakivi granites, and melts from the metasedimentarypile probably contributed largely to the granites. The low pressuresand high temperatures for regional metamorphism require geothermalgradients in excess of 60?C/km, and are consistent with thepresence of regional extensional tectonics, synorogenic magmatism,and underplating of mafic magma in this area during the Ketilidian. *Offprint requests to T. J. Dempster. Present address: Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, UK  相似文献   

17.
The sapphirine granulites from G. Madugula, Eastern Ghats preserve a variety of mineral textures and reactions. Corona and reaction textures are used in conjunction with mineral compositions to construct a sequence of metamorphic reactions describing the mineralogical evolution of sapphirine granulites. An early stage is characterized by the development of sapphirine + quartz, spinel + quartz in textural equilibrium, and possible relicts after osumilite during peak metamorphic conditions. Sapphirine/spinel crystals were later detached from quartz in the form of mineral coronas. During a subsequent sapphirine-cordierite stage, several cordierite forming reactions reflect decreasingP-T conditions. Finally during the late stage, a few samples show evidence of retrogressive hydration. Sapphirine is rather iron-rich (12.8 wt%) and the Mg number in the analysed minerals varies in the order: cordierite > phlogopite > sapphirine > orthopyroxene > spinel > garnet.P-T conditions of metamorphism have been constrained through the application of geothermobarometry and thermodynamically calibrated MAS equilibria.P-T vectors from granulite facies rocks in the G. Madugula area indicate that the rocks experienced substantial decompression (up to 3 kbar) and moderate cooling (150–200°C) subsequent to peak conditions of metamorphism (8.4 kbar, > 900°C). The decompressionalP-T history of sapphirine granulites interpreted from textural features and thermobarometric estimates suggest that they may have eventually resulted from exhumation of thickened crust.  相似文献   

18.
ULIANOV  A.; KALT  A. 《Journal of Petrology》2006,47(5):901-927
Basanites of the Chyulu Hills (Kenya Rift) contain mafic Mg–Aland Ca–Al granulite xenoliths. Their protoliths are interpretedas troctolitic cumulates; however, the original mineral assemblageswere almost completely transformed by subsolidus reactions.Mg–Al granulites contain the minerals spinel, sapphirine,sillimanite, plagioclase, corundum, clinopyroxene, orthopyroxeneand garnet, whereas Ca–Al granulites are characterizedby hibonite, spinel, sapphirine, mullite, sillimanite, plagioclase,quartz, clinopyroxene, corundum, and garnet. In the Mg–Algranulites, the first generation of orthopyroxene and some spinelmay be of igneous origin. In the Ca–Al granulites, hibonite(and possibly some spinel) are the earliest, possibly igneous,minerals in the crystallization sequence. Most pyroxene, spineland corundum in Mg–Al and Ca–Al granulites formedby subsolidus reactions. The qualitative PT path derivedfrom metamorphic reactions corresponds to subsolidus cooling,probably accompanied, or followed by, compression. Final equilibrationwas achieved at T 600–740°C and P <8 kbar, inthe stability field of sillimanite. The early coexistence ofcorundum and pyroxenes (± spinel), as well as the associationof sillimanite and sapphirine with clinopyroxene and the presenceof hibonite, makes both types of granulite rare. The Ca–Alhibonite-bearing granulites are unique. Both types enlarge thespectrum of known Ca–Al–Mg-rich granulites worldwide. KEY WORDS: granulite xenoliths; corundum; sapphirine; hibonite; Kenya Rift  相似文献   

19.
Sapphirine-bearing orthopyroxene-kyanite (Opx-Ky) and -sillimanite (Opx-Sil) granulites have been found in the Lewisian complex of South Harris in northwest Scotland. In the Opx-Ky granulites, orthopyroxene and kyanite are intergrown in a stable mineral assemblage, which indicates metamorphic condition at 800–900 °C >12 kbar. Sillimanite inclusions within orthopyroxene suggest that sillimanite formed earlier; conditions are estimated at 950 ± 30 °C at 10 kbar from orthopyroxene isopleths for aluminous orthopyroxene (<9.7 wt%). In the Opx-Sil granulite, the orthopyroxene + sillimanite + garnet + sapphirine assemblage is stable at the peak metamorphic stages, indicating P-T condition of 930–950 °C, >8 kbar according to the FMAS petrogenetic grid, and similar conditions were obtained by using orthopyroxene-garnet geothermobarometers. The two types of orthopyroxene-aluminosilicate granulites indicate that the peak metamorphic conditions were over 900 °C, compatible with ultra-high temperature metamorphism. As accessory sapphirine occurs in several assemblages and with different compositions; it is interpreted to be formed at different stages of the metamorphism. These granulites were formed during Early Proterozoic high-grade metamorphism due to the emplacement of the South Harris Igneous Complex at c. 2170–1870 Ma, and are not related to the major metamorphic episode of the Badcallian/Inverian metamorphism at c. 2700–2500 Ma in the mainland Lewisian. Received: 17 July 1998 / Accepted 8 March 1999  相似文献   

20.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号