首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Zusmmenfassung Die Ergebnisse der Schwefelisotopenanalysen von sechs Sulfid- und vier Sulfatmineralproben von Bleiberg/Kreuth (Österreich) variieren von –6,9 bis –25,9 34S in den Sulfiden und von +14,8 bis +18,9 34S in den Sulfaten. Die große Variationsbreite der Schwefelisotopen und die Bevorzugung des leichten Schwefels deutet vermutlich auf bakterielle Prozesse der Sulfidfällung. Die Sulfatschwefel fallen in den Bereich der Schwefelisotopenzusammensetzung des mesozoischen (postskytischen) Meerwassers.
Determination of the sulfur isotopic composition in some sulfide and sulfate minerals of the lead zinc deposit, Bleiberg/Kreuth, Carinthia
Summary Results of sulfur isotope analyses on 6 sulfides and 4 sulfates from Bleiberg/Kreuth (Austria) range from –6.9 to –25.9 34S (in sulfides) and from +14.8 to +18.9 34S (in sulfates). A large range of sulfide sulfur isotope fractionation with appreciable light sulfur probably indicates a bacterial sulfur source in sulfide precipiation. The sulfate sulfur plots in the range of Mesozoic (post-Skytian) seawater sulfur isotopic composition.
  相似文献   

2.
Sea water basalt interaction in spilites from the Iberian Pyrite Belt   总被引:2,自引:0,他引:2  
Low grade hydrothermally metamorphosed mafic rocks from the Iberian Pyrite Belt are enriched in 18O relative to the oxygen isotopic ratio of fresh basalt (+6.5±1). The observed 18O whole rock values range from +0.87 to +15.71 corresponding to positive isotopic shifts of +5 to +10, thus requiring isotopic exchange with fluids under conditions of high water:rock ratios at low temperatures. The lowest 18O observed corresponds to an albitized dolerite still and is compatible with independent geochemical data suggesting lower water: rock ratios for the alteration of these rocks.The isotope data are consistent with the hypothesis that the spilites from the Pyrite Belt were produced by interaction of basaltic material with sea water.Significant leaching of transition metals from the mafic rocks during alteration coupled with available sulphur isotopic data for the sulphide ores also suggest that sea water may have played an important role in the formation of ore deposits in the Iberian Pyrite Belt.  相似文献   

3.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

4.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

5.
Zusammenfassung Extrem schwerer Schwefel (bis zu 34S=+67) in den Sulfiden aus den Pb-Zn-Erzen in Carbonatgesteinen Oberschlesiens (Górny lsk) wird als Beweis für eine Beteiligung sulfat-reduzierender Bakterien (und wahrscheinlich hochsalinarer Lösungen) bei der Erzbildung angesehen.
Extremely heavy sulfur (up to 34S=+67) in sulfides from the lead-zinc ores in carbonate rocks of Upper Silesia (Górny lsk) seems to prove a participation of sulfate-reducing bacteria (and probably of highly saline solutions) in the formation of the ores.
  相似文献   

6.
The pre-Cenozoic geology at Candelaria, Nevada comprises four main lithologic units: the basement consists of Ordovician cherts of the Palmetto complex; this is overlain unconformably by Permo-Triassic marine clastic sediments (Diablo and Candelaria Formations); these are structurally overlain by a serpentinitehosted tectonic mélange (Pickhandle/Golconda allochthon); all these units are cut by three Mesozoic felsic dike systems. Bulk-mineable silver-base metal ores occur as stratabound sheets of vein stockwork/disseminated sulphide mineralisation within structurally favourable zones along the base of the Pickhandle allochthon (i.e. Pickhandle thrust and overlying ultramafics/mafics) and within the fissile, calcareous and phosphatic black shales at the base of the Candelaria Formation (lower Candelaria shear). The most prominent felsic dike system — a suite of Early Jurassic granodiorite porphyries — exhibits close spatial, alteration and geochemical associations with the silver mineralisation. Disseminated pyrites from the bulk-mineable ores exhibit a 34S range from — 0.3 to + 12.1 (mean 34S = +6.4 ± 3.5, 1, n = 17) and two sphalerites have 34S of + 5.9 and + 8.7 These data support a felsic magmatic source for sulphur in the ores, consistent with their proximal position in relation to the porphyries. However, a minor contribution of sulphur from diagenetic pyrite in the host Candelaria sediments (mean 34S = — 14.0) cannot be ruled out. Sulphur in late, localised barite veins ( 34S = + 17.3 and + 17.7) probably originated from a sedimentary/seawater source, in the form of bedded barite within the Palmetto basement ( 34S = + 18.9). Quartz veins from the ores have mean 18O = + 15.9 ± 0.8 (1, n = 10), which is consistent, over the best estimate temperature range of the mineralisation (360°–460°C), with deposition from 18O-enriched magmatic-hydrothermal fluids (calculated 18O fluid = + 9.4 to + 13.9). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( 18O = + 14.2, D = — 65) support a magmatic fluid source. However, D results for fluid inclusions from several vein samples (mean = — 108 ± 14, 1, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13, 1, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.  相似文献   

7.
In this paper, we present boron isotope analyses of variably degassed rhyolitic glasses from Long Valley, California. The following results indicate that pre-eruptive boron isotopic signatures were preserved in degassed glasses: (1) averaged secondary ionization mass spectrometry (SIMS) measurements of H2O-rich (~3 wt%) melt inclusions from late erupted Bishop Tuff pumice are indistinguishable from positive thermal ionization mass spectrometry (PTIMS) analysis of vesiculated groundmass glass (11B=+5.0±0.9 and +5.4±5, respectively); (2) SIMS spot-analyses on H2O-poor obsidian (~0.15 wt% H2O) from younger Glass Mountain Dome YA (average 11B=+5.2±1.0) overlap with compositionally similar late Bishop Tuff melt inclusions; and (3) four variably degassed obsidian samples from the 0.6 ka Mono Craters (H2O between 0.74 and 0.10 wt%) are homogeneous with regard to boron (average 11B=+3.2±0.8, MSWD=0.4). Insignificant variations in 11B between early and late Bishop Tuff melt inclusion glasses agree with published experimental data that predict minor 11B depletion in hydrous melts undergoing gas-saturated fractional crystallization. Melt inclusions from two crystal-rich post-caldera lavas (Deer Mountain and South Deadman Dome) are comparatively boron-rich (max. 90 ppm B) and have lower 11B values (average 11B=+2.2±0.8 and –0.4±1.0 ) that are in strong contrast to the boron isotopic composition of post-caldera crystal-poor rhyolites (27 ppm B; 11B=+5.7±0.8). These variations in 11B are too large to be caused by pre-eruptive degassing. Instead, we favor assimilation of 11B depleted low-temperature hydrothermally altered intrusive rocks subsequent to fresh rhyolite recharge.Editorial responsibility: J. HoefsAn erratum to this article can be found at  相似文献   

8.
Summary The stable isotope geochemistry of native gold-bearing quartz veins contained within low-grade metasedimentary strata in the central Canadian Rocky Mountains, British Columbia is examined. The data augment previous geological and geochemical studies.Vein pyrite 34S values cluster between + 14.2 and + 16.3 (CDT). Coeval galenas exhibit 34S values between + 11.4 and 13.3. Pyrite-galena geothermometry reveals a mean temperature of mineralization of 300 ± 43°C. Comparison of 34S values for the vein pyrites, with values for pyrite porphyroblasts in country rocks suggests that vein sulfur was probably derived from the host rocks.18O(SMOW) values of host quartzites and pelites cluster between + 12.0 and + 13.5, and + 9.5 and + 10.5, respectively. Auriferous vein quartz exhibits 18O values between + 13.0 and + 15.0. Veins were likely deposited from fluids undergoing post-peak metamorphic cooling.Vein inclusion fluids exhibit values between –105 and –124 (SMOW). Combined O-H-isotope data are most compatible with a source fluid involving chemically- and isotopically-evolved meteoric waters.The critical role of H-isotope data in the evaluation of source fluids for such mesothermal gold lodes is stressed. The paucity of H-isotope data pertaining to the study of lode gold deposits in similar low-grade metasedimentary domains suggests that the involvement of meteoric waters may at times be overlooked.
Der Ursprung metamorphogener Gold-Ganglagerstätten: Bedeutung stabiler Isotopendaten aus den zentralen Rocky Mountains, Kanada
Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Untersuchung der Geochemie stabiler Isotope goldführender Quarzgänge in schwach metamorphen Sedimenten der zentralen Rocky Mountains in Britisch Kolumbien, Kanada. Die Resultate ergänzen früher publizierte geologische und geochemische Daten.Die 34S-Werte von Gang-Pyrit liegen zwischen + 14.2 und + 16.3 (CDT); gleichzeitig gebildeter Bleiglanz hat 34S-Werte von + 11.4 bis + 13.3. Die Isotopengeothermo metrie des Pyrits und Bleiglanzes ergibt eine mittlere Mineralisationstemperatur von 300°C + 43° für diese beiden Minerale. Vergleiche der 8345-Werte des Gang-Pyrits mit denen von Pyrit-Porphyroblasten des Nebengesteins lassen für die Gang-Pyrite eine Herkunft des Schwefels aus dem Nebengestein als wahrscheinlich erscheinen.Die 18O-Werte von Quarziten und Peliten, die als Nebengesteine auftreten, streuen von + 12.0 bis + 13.5 (SMOW), beziehungweise von +9.5 bis + 10.5 Quarz goldführender Gänge hat 18O-Werte, die zwischen + 13.0 und + 15.0 (SMOW) liegen. Er wurde als Gangfüllung wahrscheinlich bei sinkenden Temperaturen aus post metamorphen wäßrigen Lösungen abgesetzt.Flüssigkeitseinschlüsse von Gangmineralien zeigen D-Werte von -105 bis -124 (SMOW). Die H-O-Isotope sind deshalb ein Hinweis dafür, daß als mineralisierende Lösungen isotopisch veränderte meteorische Wässer in Betracht zu ziehen sind. Bei der Deutung der Herkunft der mineralisierenden wäßrigen Lösungen von mesothermalen Goldgängen muß die Kenntnis der H-Isotope als kritisch betrachtet werden. Die Seltenheit mit der H-Isotopendaten dieses Lagerstättentyps in der Literatur diskutiert werden, dürfte ein wesentlicher Grund dafür sein, daß die Rolle meteorischer Wässer bei der Genese mesothermaler, in Metasedimenten liegender Goldgänge, vielfach übersehen wurde.


With 4 Figures  相似文献   

9.
Emerald deposits in Swat, northwestern Pakistan, occurring in talc-magnesite and quartz-magnesite assemblages, have been investigated through stable isotope studies. Isotopic analyses were performed on a total of seven emeralds, associated quartz (seven samples), fuchsite (three samples) and tourmaline (two samples) from the Mingora emerald mines. The oxygen isotopic composition ( 18O SMOW) of emeralds shows a strong enrichment in18O and is remarkably uniform at + 15.6 ± 0.4 (1,n = 7). Each of the two components of water in emerald (channel and inclusion) has a different range of hydrogen isotopic composition: the channel waters being distinctly isotopically heavier (D = –51 to –32 SMOW) than the other inclusion waters (D = –96 to –70 SMOW). Similarly the oxygen isotopic compositions of tourmaline and fuchsite are relatively constant ( 18O = + 13 to + 14 SMOW) and show enrichment in18O. The 18O values of quartz, ranging from + 15.1 to + 19.1 SMOW, are also high (+ 16.9 ± 1.4 1, n = 7). The meanD of channel waters measured from emerald (–42 ± 6.6 SMOW) and that of fluid calculated from hydrous mineralsDcalculated (–47 ± 7.1 SMOW) are consistent with both metamorphic and magmatic origin. However, the close similarity between the measuredD values of the hydroxyl hydrogen in fuchsite (–74 to –6 SMOW) and tourmaline (–84 and –69 SMOW) with pegmatitic muscovite and tourmaline suggests that the mineralization was probably caused by modified (18O-enriched) hydrothermal solutions derived from an S-type granitic magma. The variation in the carbon and oxygen isotopic composition of magnesite, locally associated with emerald mineralization, is also very restricted ( 13 –3.2 ± 0.7%, PDB; 18O + 17.9 ± 1.27 SMOW). On the basis of the isotopic composition of fluid ( 13C –1.8 ± 0.7 PDB; 18O + 13.6 ± 1.2 SMOW calculated for the 250-550 °C temperature), it is proposed that the Swat magnesites formed due to the carbonation of previously serpentinized ultramafic rocks by a CO2-bearing fluid of metamorphic origin.  相似文献   

10.
In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of 18O is as a sensitive indicator of contamination, either at the start of differentiation ( 18Oinit) or as a proportion of fractionation in AFC. Plots of 18O vs SiO2-allow to determine initial 18O values for different sequences for source comparison. For NBS-28=9.60, the 18O at 48% SiO2-varies between a high 6.4 for Kiglapait (Kalamarides 1984), 5.9 for Transhimalaya, 5.8 for Hachijo-Jima (Matsuhisa 1979), 5.6 for Koloula (Chivas et al. 1982) and a low 5.3 for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the Ladakh-Lhasa terrane, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous ( 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low- 18O (5.0–0) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya 18O trend line, but the distribution of low total rock or feldspar 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.  相似文献   

11.
The carbon and oxygen isotopic composition of Fe-carbonate ore and its calcitic to dolomitic Devonian host rocks at the Steirischer Erzberg siderite deposit (Greywacke zone, Upper Austroalpine Unit) were determined in order to constrain the source and nature of the Fe-rich mineralizing fluid. The 18O-values obtained for various Fe-carbonate generations and the carbonate host lie within a similar range between + 14.6 and + 21.6 (V-SMOW). No good correlation exists between the relative ages of the carbonate phases and their O isotopic composition. The variation in 18O-values is due to metamorphic recrystallization with locally variable fluid/rock ratios. The average 13C-value of the carbonate host is +0.5 ± 1.2 (PDB) which corresponds well to worldwide Phanerozoic marine carbonate values. The first Fecarbonate generation has slightly lower 13C-values, on average -1.4 ± 0.8 (PDB). Recrystallization of both the carbonate host minerals and the ankerite/siderite led to significantly lower 13C-values of -4.2 ± 0.6 and-4.7 ± 0.7, respectively. Within the basal breccia of the post-Hercynian transgression series matrix calcite/ dolomite shows an average 13C-value of -2.9 ± 0.7, and matrix siderite/ankerite an average value of-4.1 ± 0.4. These data, together with Sr isotope data published previously, strongly support a late-diagenetic or epigenetic first Fe-mineralization from convecting formation waters. They ascended along extension faults and were driven by an increased heat flow caused by crustal thinning during a Devonian rifting phase that initiated the separation of the Noric terrane from Africa. A potential source of the Fe could have been the underlying Ordovician acid volcanics. Regional metamorphism related to collision tectonics in the Late Carboniferous (Hercynian) and later during the Alpine orogeny, caused intensive recrystallization and partial mobilization of the various carbonate phases.  相似文献   

12.
Zusammenfassung Die S-Isotopenverteilung wurde an 67 Sulfid- und 17 Barytproben aus der Blei-Zink-Erzlagerstätte Grund untersucht. Die 34S-Werte der Zinkblende der Mineralisationsphase II liegen im Westfeld-Erzmittel I und in den östlich anschließenden Erzmitteln zwischen +4 und +6, in dem am weitesten westlich liegenden Westfeld-Erzmittel II zwischen +6 und +10. Die Werte für Bleiglanz der Mineralisationsphase II sind +2 bis +4 bzw. +4 bis +7. Die Sulfide der Mineralisationsphase III haben allgemein niedrigere -Werte. Koexistierende Sulfide zeigen eine deutliche Fraktionierung, wobei stets ZnS > PbS ist; die Differenz beträgt in der Mineralisationsphase II im Mittel 1,8, in der Phase III 3. Dies deutet auf niedrigere Bildungstemperatur der Minerale der Phase III hin. Zur genetischen Deutung der beobachteten -Abnahme beim Übergang zur Mineralisationsphase II werden vier Modelle diskutiert. Baryte zeigen innerhalb der Lagerstätte recht einheitliche 34S-Werte zwischen +11 und +14,5%. Diese Einheitlichkeit wird durch den Einfluß deszendenter Zechstein-Lösungen erklärt.
34S-values are given for 67 sulfide and 16 barite specimens from the Pb-Zn-deposit Grund (Harz mountains, W-Germany). In the central part of the deposit the sulfide 's of the first major mineralization (phase II) range from: ZnS +4 to +6 and PbS +2 to +4. The sulfides of the second major mineralization (phase III) are depleted in 34S and range from: ZnS +2 to +4, PbS –1,4 to 3. The sulfides at the western end of the vein system are heavier; the phase II minerals ranging from: ZnS +6 to 10 and PbS +4 to 7. The mean -difference between co-existing ZnS and PbS in phase II is 1,8, in phase III 3. This indicates lowering of temperature of formation for the phase III ore. Four models have been set up in order to explain the observed -variation. Barites with rather uniform 's from +11 to +14,5 are probably affected by descendent solutions from overlying sulfate sediments of Permian age.
  相似文献   

13.
The isotopic composition of oxygen and carbon was studied in accessory carbonates and quartz separated from salts in Upper Devonian halogenous formations of the Pripyat Trough (Belorus). It is established that isotopic characteristics vary in a wide range. Values of 18O vary in the following range (SMOW): from 18.2 to 29.2 in calcites, from 15.7 to 32.5 in dolomites, and from 17.4 to 27.2 in quartz. Values of 13C range from –13.4 to 1.4 in calcites and from –11.1 to 1.7 in dolomites (PDB). Results obtained indicate highly variable isotope-geochemical conditions of sedimentation and early diagenesis during the formation of evaporitic sediments. Accessory minerals were repeatedly formed in a wide temperature range and probably at various stages of the lithogenesis.  相似文献   

14.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

15.
Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in 34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar 34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (34S approaching 25) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (34S < 5) may reflect fluids moving through underlying granitic basement. Two areas containing Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The 34S values of West Dome sulfides are 0.9 to 6.5 and pyrite-chalcopyrite indicate a temperature of 525° ± 50 °C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, 34S values of Central Dome sulfides are 9.4 to 20.0 and pyrite-chalcopyrite indicate temperatures of 275° ± 50 °C. Similar 34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary, but in southeast Missouri, evidence exists for structurally controlled MVT fluid movement > 600 m vertically through underlying Precambrian igneous rocks. Such basement involvement has been suggested for other carbonate-hosted base-metal districts (e.g. Irish base metal deposits) and should be considered an integral part of the ore-forming process in southeast Missouri.  相似文献   

16.
The world-class Idrija mercury deposit (western Slovenia) is hosted by highly deformed Permocarboniferous to Middle Triassic sedimentary rocks within a complex tectonic structure at the transition between the External Dinarides and the Southern Alps. Concordant and discordant mineralization formed concomitant with Middle Triassic bimodal volcanism in an aborted rift. A multiple isotopic (C, O, S) investigation of host rocks and ore minerals was performed to put constraints on the source and composition of the fluid, and the hydrothermal alteration. The distributions of the 13C and 18O values of host and gangue carbonates are indicative of a fracture-controlled hydrothermal system, with locally high fluid-rock ratios. Quantitative modeling of the 13C and 18O covariation for host carbonates during temperature dependent fluid-rock interaction, and concomitant precipitation of void-filling dolomites points to a slightly acidic hydrothermal fluid (13C–4 and 18O+10), which most likely evolved during isotopic exchange with carbonates under low fluid/rock ratios. The 34S values of hydrothermal and sedimentary sulfur minerals were used to re-evaluate the previously proposed magmatic and evaporitic sulfur sources for the mineralization, and to assess the importance of other possible sulfur sources such as the contemporaneous seawater sulfate, sedimentary pyrite, and organic sulfur compounds. The 34S values of the sulfides show a large variation at deposit down to hand-specimen scale. They range for cinnabar and pyrite from –19.1 to +22.8, and from –22.4 to +59.6, respectively, suggesting mixing of sulfur from different sources. The peak of 34S values of cinnabar and pyrite close to 0 is compatible with ore sulfur derived dominantly from a magmatic fluid and/or from hydrothermal leaching of basement rocks. The similar stratigraphic trends of the 34S values of both cinnabar and pyrite suggest a minor contribution of sedimentary sulfur (pyrite and organic sulfur) to the ore formation. Some of the positive 34S values are probably derived from thermochemical reduction of evaporitic and contemporaneous seawater sulfates.Editorial handling: P. Lattanzi  相似文献   

17.
Sulfur isotope analyses were made on 14 alunites from volcanic and sedimentary rocks widely different in chemistry and age from southern Tuscany and northern Latium, central Italy. The 34S values range from +0.7 to +9.6, and appear not to be related to the nature of the host rock. Geological and isotopic evidence suggests that all the alunites formed by supergenic oxidation of sulfides. Sulfides occurring with alunites in the volcanic rocks of Latium can be divided into an isotopically light group of probably magmatic origin (34S=–1.5 to +3.4) and a heavy one with 34S=+6.0 to +10.3, tentatively interpreted as deposited by hydrothermal fluids that leached sulfides of similar 34S/32S from the deep basement. Such an interpretation is consistent with recent studies indicating that in the perityrrhenian belt of Latium exists a continuation, at depth, of the Tuscan stratigraphic series, rich in sulfides with 34 from +6 to +12.  相似文献   

18.
Summary A set of 354 sulphur isotope data from the Bleiberg deposit, the type deposit of Alpine low temperature carbonate hosted Pb–Zn deposits (APT deposits), is critically evaluated applying statistical methods. The sulphur isotope patterns vary significantly among the ore horizons. This suggests a long lasting and polyphase mineralisation system. The sulphur isotope composition of barite corresponds to that of Carnian seawater (i.e. 16 34S). The 34S values of the iron sulphides correspond to data from sedimentary iron sulphides. Pb and Zn sulphides are characterized by three normally distributed 34S populations with mean values of –6 to –8, –13 to –18, and –25 to –29. Heavy sulphur (>–10 34S) indicates contribution of sulphide sulphur from epigenetic-hydrothermal fluids, whereas light sulphide sulphur (<–21 34S) was produced by sulphur – reducing bacteria. The intermediate population is explained by mixing of sulphur derived from these two sources. Other sources of local importance, however, can not be excluded. The isotope populations correspond only partly to the paragenetic ore stages. The sulphur isotope patterns in the APT deposits are regionally different. Data from other low-temperature sediment-hosted Pb–Zn deposits support the proposed interpretation. A comparison demonstrates that the sulphur isotope patterns of APT deposits correspond to patterns of the Irish type deposits, but are different to those of Mississippi Valley type deposits.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-004-0071-3  相似文献   

19.
Summary Pervasive hydrothermal alteration zones in quartz-feldspar porphyry domes underly all massive sulfide lenses in the D-68 Zone Cu-Zn deposit, Noranda. Alteration pipes are mineralogically zoned and contain chloritic cores consisting of stringer sulfides, enveloped by sericitic haloes. Silicified rocks are found locally.Alteration took place at nearly constant volume. Na depletion, and K enrichment relative to the least altered rocks, are found in all alteration zones. Fe and Mg have been added to the chloritic zone and subtracted in the sericitic and silicic zones. Ca and Si are enriched mainly in the silicic zone. Al, Ti and Zr were the least mobile of the elements studied.Whole-rock 18O values vary from +5.6 to +6.2 per mil in chloritized rocks, +5.8 to + 7.3 per mil in sericitized rocks and + 7.2 to + 8.3 per mil in silicified rocks. D values for two chloritized samples are – 63 and – 70 per mil whereas in two sericitized samples they are close to –62 per mil. Quartz from the chlorite alteration zone is isotopically heavier (18O = 8.6 per mil) than that from the sericite alteration zone (18O = 6.4 per mil), suggesting equilibration with different hydrothermal fluid or different temperature of alteration. Assuming an alteration temperature of 300° + 50°C the fluid in equilibrium with quartz and chlorite had 18O and D values of about 1.5 ± 2.0 per mil and –23 ± 5 per mil, respectively. The fluid in equilibrium with quartz and sericite had 18O and D values of about –0.5 ± 2 per mil and –30 ± 5 per mil, respectively. On the basis of isotopic data, seawater was probably the major constituent of the hydrothermal fluids.
Hydrothermale Umwandlung und Sauerstoff-Wasserstoff-Isotopengeochemie der Zone D-68 Cu-Zn Derberz Sulfidlagerstätte, Noranda District, Quebec, Canada
Zusammenfassung Hydrothermale Umwandlungszonen in porphyrischen Quarz-Feldspat Gesteinskörpern liegen unterhalb von Derberz Sulfidlinsen in der D-68 Zone Cu-Zn Lagerstätte, Noranda. Umgewandelte pipes sind mineralogisch zoniert; sie enthalten aus Sulfiden bestehende chloritische Kerne, die von sericitischen Höfen umhüllt werden. Lokal treten silicifizierte Gesteine auf.Die Umwandlung ging bei annähernd konstantem Volumen vor sich. Na-Verarmung und K-Anreicherung, bezogen auf die am wenigsten umgewandelten Gesteine, liegen in allen Umwandlungszonen vor. Fe und Mg wurden der Chloritzone zugeführt, in den Sericit- und Si-Zonen abgeführt. Ca und Si sind vor allem in der Si-Zone angereichert. Al, Ti und Zr waren von den untersuchten Elementen am wenigsten mobil.Gesamtgesteins-18O Werte variieren von +5,6 bis +6,2 in den chloritisierten Gesteinen, von +5,8 bis 7,3 in sericitisierten Gesteinen und von +7,2 bis +8,3 in den silicifizierten Gesteinen. Die D Werte für zwei chloritisierte Proben betragen –63 und –70, in zwei sericitisierten Proben liegen sie hingegen nahe bei –62. Quarz von der Chlorit-Umwandlungszone ist isotopisch schwerer (18O = 8,6) als von der Sericit-Umwandlungszone (18O = 6.4), was eine Gleichgewichtseinstellung mit verschiedenen hydrothermalen Lösungen oder eine verschiedene Umwandlungstemperatur nahelegt. Bei einer angenommenen Umwandlungstemperatur von 300 ± 50°C, hatte die im Gleichgewicht mit Quarz und Chlorit stehende Lösung 18O und D Werte von etwa 1,5 ± 2 bzw. –23 + 5. Die im Gleichgewicht mit Quarz und Sericit befindliche Lösung hatte 18O und D Werte von etwa –0,5 ± 2%o bzw. –30 ± 5. Aufgrund der Isotopendaten war wahrscheinlich Meerwasser der Hauptbestandteil der hydrothermalen Lösungen.


With 7 Figures  相似文献   

20.
The Tallberg deposit is situated in the Skellefte District in northern Sweden. It is a Palaeoproterozoic equivalent of Phanerozoic poryphyry-type deposits. The mineralization is situated within the Jörn granitoid complex and is associated with intrusive quartz-feldspar porphyries. The granitoids are coeval with mainly felsic volcanic rocks hosting several massive sulphide deposits. The alteration is generally of a mixed phyllic-propylitic type, but areas or zones associated with high gold grades exhibit phyllic alteration. Ore minerals are pyrite, chalcopyrite, sphalerite, magnetite, and trace amounts of molybdenite. In this stable isotope study, quartz, sericite, and chlorite from the alteration zones were sampled. The magmatic quartz has a 18O composition of + 6.2 to +6.7 whereas the quartz in the hydrothermal alteration zones have values ranging from +7.5 to +10.6. The calculated temperatures for this fractionation range from 430° to 520°C. The sericites have 18O ranging from +4.6 to +8.2 (average +6.6) and D -31 to -54 (average -41). Chlorites range from 18O +4.2 to +7.7 and D from –34 to –44. The range of 34S of 11 pyrite samples is +3.8 to +5.5 with an average of +4.6 ± 0.5, suggesting a relatively homogeneous sulphur source, probably of magmatic origin. Modelling waters in equilibrium with the minerals indicates early magmatic fluids with 18O of 6.5. This fluid mixed with a low 18O and high D fluid, which is tentatively identified as seawater. The 18O signature of sericite and chlorite also indicates significant water-rock exchange, explaining the positive 18O values for the waters in equilibrium with the hydrated minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号