首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After adding the data observed in the years from 1979 to 1982 to those obtained earlier (Ding et al., 1981), we re-examine the previous results and conclude:
  1. The longitudinal distribution of spiral spots on the solar disc is generally the same as that of sunspot groups with areas of S p ≥ 400, but their active longitudes seem to be more concentrated.
  2. The distribution of spiral patterns in the southern and northern hemispheres shows that the differential rotation may be a fundamental solar dynamo for the formation of the spiral spots.
  3. The statistical directions of the emerging twisted magnetic vectors in the active regions in the southern and northern hemispheres are synchronously inverse with a period of about two years. This period seems to be detected in other solar observations.
  相似文献   

2.
Statistical properties of solar active regions (AR) have been studied. In particular, (1) the distribution of ARs by their areas and importances using normal and lognormal distribution laws; (2) it was checked whether the distribution of the ARs' birth sites satisfies the Poisson distribution law (the so-called ‘law of rare events’). Observational data of 1979–1982 have been used and our conclusions are as follows:
  1. As regards the areas, the distribution of the ARs that emerged near or on the borders of the large-scale background fields is normal or lognormal.
  2. As regards the importances, the distribution of all ARs is lognormal.
  3. The distribution of ARs that emerged far from background field borders is not normal.
  4. ARs are not casual or rare events on the Sun.
  相似文献   

3.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

4.
We have extended our previous study of coronal holes, solar wind streams, and geomagnetic disturbances from the declining phase (1973–1975) of sunspot cycle 20 through sunspot minimum (1976) into the rising phase (1977) of cycle 21. Using daily He I 10830 Å spectroheliograms and photospheric magnetograms, we found the following results:
  1. As the magnetic field patterns changed, the solar atmosphere evolved from a structure having a few, large, long-lived, low-latitude coronal holes to one having numerous small, short-lived, high-latitude holes (in addition to the polar holes which persisted throughout this 5-year interval).
  2. The high-latitude holes recurred with a synodic rotation period of 28–29 days instead of the 27-day period already known to be characteristic of low-latitude holes.
  3. During 1976–1977 many coronal holes were intrinsically ‘weak’ in the sense that their average intensities did not differ greatly from the intensity of their surroundings. Such low-contrast holes were rare during 1973–1975.
An updated Bartels display of the occurrence of holes, wind speed, and geomagnetic activity summarizes the evolution of their characteristics and interrelations as the sunspot cycle has progressed. Long-lived, low-latitude holes have become rare but remain terrestrially effective. The more common high-latitude holes are effective only when the Earth lies at a relatively high heliographic latitude in the same solar hemisphere.  相似文献   

5.
Four consecutive years of a quasi-continuous survey of the solar Lα line are presented. Absolute calibration and aging correction are evaluated producing higher quality measurements which are:
  • -the total Lα flux,
  • -the central Lα flux,
  • -the blue wing flux at 0.33 Å from the center,
  • -the slope of the blue wing at the same location.
  • Empirical laws are deduced from this large amount of data giving a relation between these different parameters and the flux integrated over the whole line. Furthermore, other empirical laws are obtained between the total Lα flux and two solar activity indices. These relations give a possibility of evaluating the solar Lα flux even when no observation is available and, as previously found by Prinz (1974), show that to a first approximation the solar Lα flux is composed of a quiet and of an active component. The active component changes with the 27 days period; the quiet one with the 11 yr solar cycle.  相似文献   

    6.
    Correlation and spectral analysis of solar radio flux density and sunspot number near the maximum of the sunspot cycle has indicated the existence of
    1. long period amplitude modulation of the slowly varying component (SVC) of radio emission
    2. coronal storage over a period of the order of three solar rotations
    3. fast decay (one solar rotation period or less) of gyromagnetic emissions from radio sources
    4. shift in location of chromospheric sources compared to those of either the upper corona or the photosphere.
      相似文献   

    7.
    The purpose of this paper is to present the correlation of seasonal variation of 5893 Å line intensity with relative sunspot numbers, solar flare numbers and the variable component of 10.7 cm solar flux. A study has been made and the following important results have been obtained.
    1. The intensity of 5893 Å line at Calcutta shows periodic variation with different solar parameters during descending part of secondary peak of 21st solar cycle (1984–1985).
    2. 5893 Å line intensity of Mt. Abu also shows periodic variation with solar parameters during the period 1965–1968 when there was a peak phase of 20th solar cycle.
    3. A possible explanation for such type of variation is also presented.
      相似文献   

    8.
    At the Swedish Solar Observatory in Anacapri we have simultaneously used the following combination of instruments in our investigation of active regions:
    1. A spectrograph with an image rotator placed in front of the slit.
    2. A subtractive double dispersive spectrograph (solar Chromatograph).
    3. A Hα+0.5 Å patrol instrument. Scans over the 3b flare of August 4th 1972 are used to illustrate the method. The illustrations clearly show downflowing matter connected with bright knots and filaments in the emitting area, possibly in accordance with Hyder's infall-impact mechanism.
      相似文献   

    9.
    The Transition Region and Coronal Explorer (TRACE) gave us the highest EUV spatial resolution and the Ramaty High Energy Solar Spectrometric Imager (RHESSI) gave us the highest hard X-ray and gammaray spectral resolution to study solar flares. We review a number of recent highlights obtained from both missions that either enhance or challenge our physical understanding of solar flares, such as:
    1. Multi-thermal Diagnostic of 6.7 and 8.0 keV Fe and Ni lines
    2. Multi-thermal Conduction Cooling Delays
    3. Chromospheric Altitude of Hard X-Ray Emission
    4. Evidence for Dipolar Reconnection Current Sheets
    5. Footpoint Motion and Reconnection Rate
    6. Evidence for Tripolar Magnetic Reconnection
    7. Displaced Electron and Ion Acceleration Sources.
      相似文献   

    10.
    In order to establish some regularities or variations in the distribution of widths and intensities of the coronal line profiles λ 5303 and λ 6374 depending upon the solar activity, a statistical analysis was made for more than 3000 profiles (the data covering the period 1966–1972). The following results obtained:
    1. The distribution of coronal line profile widths changes depending upon the solar activity phase.
    2. The character of the relation between the intensities and widths varies with variation of the solar activity phase.
      相似文献   

    11.
    The majority of flare activity arises in active regions which contain sunspots, while Coronal Mass Ejection (CME) activity can also originate from decaying active regions and even so-called quiet solar regions which contain a filament. Two classes of CME, namely flare-related CME events and CMEs associated with filament eruption are well reflected in the evolution of active regions. The presence of significant magnetic stresses in the source region is a necessary condition for CME. In young active regions magnetic stresses are increased mainly by twisted magnetic flux emergence and the resulting magnetic footpoint motions. In old, decayed active regions twist can be redistributed through cancellation events. All the CMEs are, nevertheless, caused by loss of equilibrium of the magnetic structure. With observational examples we show that the association of CME, flare and filament eruption depends on the characteristics of the source regions:
  • ?the strength of the magnetic field, the amount of possible free energy storage,
  • ?the small- and large-scale magnetic topology of the source region as well as its evolution (new flux emergence, photospheric motions, cancelling flux), and
  • ?the mass loading of the configuration (effect of gravity). These examples are discussed in the framework of theoretical models.
  •   相似文献   

    12.
    The radio emission of a selected number of solar active regions has been investigated with high angular resolution at two frequencies: 10 and 17 GHz. By comparing the results of the two observations the following conclusions can be drawn:
    1. The brightness temperature distribution of an active region is often composed of very bright cores of small dimension (angular extent θ?20″) imbedded in extended halos of lower brightness.
    2. The radio emission of such structures as well as the degree of polarization can be explained with a thermal process. The halos can originate by pure thermal bremsstrahlung while in the case of the very bright cores found at 10 GHz (brightness temperature T b?1–9 × 106K) the emission at the harmonics of the gyrofrequency is needed.
      相似文献   

    13.
    Coordinates of polar faculae have been measured and processed using daily photoheliograms of the Kislovodsk Station of the Pulkovo observatory with the final goal of studying their latitude distribution during the solar cycles 20–21. The results obtained are as follows:
    1. The first polar faculae emerge immediately after the polarity inversion of the solar magnetic field at the latitudes from 40° to 70° with the average ?-55°.
    2. The zone of the emergence of polar faculae migrates poleward during the period between the neighbouring polarity inversions of the solar magnetic field. This migration is about 20° for 8 years, which corresponds to a velocity of 0.5 m s-1.
    3. The maximum number of polar faculae was reached at the activity minimum (1975–1976).
    4. The last polar faculae were observed in the second half of 1978 at the latitudes from 70° to 80°.
      相似文献   

    14.
    A. D. Fokker 《Solar physics》1980,67(1):101-108
    A microwave magnitude is defined as a logarithmic measure of the energy content of a microwave event. The distributions of microwave magnitudes are derived for collections of bursts that:
    1. Occurred during two periods in solar cycle 20, one relatively early and the other relatively late;
    2. Occurred in association with optical flares in particular centres of activity.
    No dependence on the phase in the solar cycle has been found. One centre of activity was found that produced a distribution different from normal. The distribution of microwave magnitudes can be satisfactorily represented by the expression n(m) = const (m/α)e ?(m/α) 2. A phenomenological model for the flare build-up process is indicated which leads to a distribution of this very shape.  相似文献   

    15.
    Based on the developed method of jointly using data on the magnetic fields and brightness of filaments and coronal holes (CHs) at various heights in the solar atmosphere as well as on the velocities in the photosphere, we have obtained the following results:
  • The upward motion of matter is typical of filament channels in the form of bright stripes that often surround the filaments when observed in the HeI 1083 nm line.
  • The filament channels observed simultaneously in Hα and HeI 1083 nm differ in size, emission characteristics, and other parameters. We conclude that by simultaneously investigating the filament channels in two spectral ranges, we can make progress in understanding the physics of their formation and evolution.
  • Most of the filaments observed in the HeI 1083 nm line consist of dark knots with different velocity distributions in them. A possible interpretation of these knots is offered.
  • The height of the small-scale magnetic field distribution near the individual dark knots of filaments in the solar atmosphere varies between 3000 and 20000 km.
  • The zero surface separating the large-scale magnetic field structures in the corona and calculated in the potential approximation changes the inclination to the solar surface with height and is displaced in one or two days.
  • The observed formation of a filament in a CH was accompanied by a significant magnetic field variation in the CH region at heights from 0 to 30000 km up to the change of the predominant field sign over the entire CH area. We assume that this occurs at the stage of CH disappearance.
  •   相似文献   

    16.
    Spectroheliograms, obtained in certain Fraunhofer lines with the 82-cm solar image at the Kitt Peak National Observatory, show a bright photospheric network having the following properties:
    1. It resembles, but does not coincide with, the chromospheric network, the structure of the photospheric network being finer and more delicate than the relatively coarse structure of the chromospheric network.
    2. It is exactly cospatial with the network of non-sunspot photospheric magnetic fields.
    3. Its visibility in a given photospheric Fraunhofer line is primarily dependent on the states of ionization and excitation from which the line is formed and secondarily dependent on the Zeemansensitivity of the line-being most visible in low-excitation lines of neutral atoms and least visible in high-excitation lines of singly ionized atoms.
    We conclude that these magnetic regions of the solar atmosphere are a few hundred degrees hotter than their surroundings, and that they are visible in white light near the limb as photospheric faculae.  相似文献   

    17.
    An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
    1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
    2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
    3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
    4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
    5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
    6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
    7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
    8. No unusual velocities are observed in the photosphere at flare time.
      相似文献   

    18.
    Spectroheliograms were obtained simultaneously in the He ii 304 Å emission line and the He i 10 830 Å absorption line with an angular resolution of approximately 5″. A negative print of the 304 Å image is matched with a positive print of the 10 830 Å image so that corresponding features of the chromospheric network (including active regions) appear identical in the two images. Differences between these images include the facts that:
    1. Disk filaments and limb darkening are strongly visible in the 10 830 Å positive image, but they are weakly visible (as lightenings) in the 304 Å negative image.
    2. The contrast between the chromospheric network and the network cell centers is much greater in the 10 830 Å image than in the 304 Å negative image.
    These results provide constraints on models of helium line formation in various types of solar features.  相似文献   

    19.
    The radiation fluxes of the NGC 1275 galaxy central region are being observed on the 1.25-m telescope, using a scanning spectrophotometer with the entrance aperture 10″ in three Δλ=80 Å spectral regions: Hβ, 4959+5007 Å [OIII] and continuum. There were 35 nights of observations during 1982–1987. With the time resolution of half an hour 379 measurements were obtained in each spectral region. The analysis of these results shows:
    1. The standard deviations of measurements in each spectral region 2–3 times exceed the errors of observations.
    2. The radiation flux distribution resembles to normal one only for Hβ line.
    3. Two-humps forms of continuum flux distribution curve is like that of radio emission in 8 mm and 2.6 cm wavelengths.
    4. Various forms of fluxes distribution curves of Hβ and [OIII] lines permit us to suppose that the location of these lines emission regions near the sources of excitation are different.
      相似文献   

    20.
    Improving our understanding of the mechanisms that energize the solar wind and heat structures in the solar corona requires the development of empirical methods that can determine the three-dimensional (3D) temperature and density distributions with as much spatial and temporal resolution as possible. This paper reviews the solar rotational tomography (SRT) methods that will be used for 3D reconstruction of the solar corona from data obtained by the next generation of space-based missions such as the Solar and Terrestrial Relations Observatory (STEREO), Solar-B and the Solar Dynamics Observatory (SDO). In the next decade, SRT will undergo rapid advancement on several frontiers of 3D image reconstruction:
    1. Electron density reconstruction from white-light coronagraph images.
    2. Differential emission measure (DEM) reconstruction from EUV images.
    3. Dual-spacecraft (STEREO) observing geometry.
    4. Fusion of data from multiple spacecraft with differing instrumentation.
    5. Time-dependent estimation methods.
    Although the principles described apply to many different wavelength regimes, this paper concentrates on white-light and EUV data. Previous work on all of these subjects is reviewed, and major technical issues and future directions are discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号