首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies illustrate that bioturbating animal species individually affect aquatic sediments through diverse mechanistic abilities, whereas assessments of joint effects of such species on sediments are relatively rare. Such joint effects have implications for real systems, in which different bioturbators coexist, but are difficult to predict for two reasons. First, they can be additive (being the sum of the individual effects of each species) or they can be positive or negative interactive (being greater or smaller than the sum of the individual effects). Second, if interactive, they can depend on biotic interactions that affect the bioturbating activities of the species and/or they can depend on physical interactions among bioturbator-induced sediment modifications. Using experimental streams, we assessed such joint effects on gravel–sand sediments for flow and sediment conditions preferred by barbel (Barbus barbus) but also used by gudgeon (Gobio gobio) and, in a second experiment, for flow and sediment conditions preferred by both male crayfish (Orconectes limosus) and gudgeon. These species have different mechanistic abilities to affect gravel and/or sand in stream beds. In each experiment, we measured (i) the transport of gravel and sand at baseflow (during 12 experimental days); (ii) four sediment surface characteristics (after 12 d); and (iii) the critical shear stress (τc) causing incipient gravel and sand motion during experimental floods (after 12 d). Gudgeon contributed differently to the joint effects in the two experiments, which related to its individual weight, prevailing baseflow shear stress, sediment particle weight, and sediment mixture (availability of surface sand). Overall, the species pairs had predominantly negative interactive joint effects on the sediment variables assessed by us. Both a literature survey and observations during the experiments provided no evidence for direct biotic interactions between barbel and gudgeon or crayfish and gudgeon, so one would reasonably associate their negative interactive effects on the sediments with physical interactions among bioturbator-induced sediment surface modifications. Individually, each species reduced the percentage of sand in the surface layer and the surface algal cover to relatively low values so that the species pairs could not accomplish much greater joint effects on these variables, explaining their negative interactive effects on them. As algal cover particularly affected the τc for gravel and sand, the negative interactive effects of the animals on this surface variable chained toward the τc for the sediments, on which the species pairs also had negative interactive effects. Such chained negative interactive effects on sediment variables are seemingly a general pattern of joint bioturbator effects on aquatic sediments, i.e., the many so far described single-species effects should be smaller than their sum if the species coexists in nature.  相似文献   

2.
Using intact samples of Gobi surfaces, we conducted wind tunnel experiments and related analyses to describe the surface characteristics of Gobi deserts and their significance for dust emissions in the Ala Shan Plateau, an area of Central Asia with high dust emissions. Under relatively high wind velocities (22 m s−1), the total sediment transport approached 700 g m−2, with the fine fractions (<50 μm in diameter) accounting for up to 26 g m−2. In consecutive experiments, the emission rates decreased greatly due to depletion of erodible particles. In the Ala Shan Plateau, coverage by gravels varied, and aeolian sediment transport increased with increasing gravel cover (to about 30%); above that level, transport decreased. Because gravel cover was less than 30% in most areas, the gravel may not play important role in dust emissions in this region. Although the Gobi surfaces are covered by gravel, high clay contents that may restrain sediment transport. In the Ala Shan Plateau, dust emissions therefore appear to be controlled mainly by the availability of fine particles, which is in turn controlled by their deposition by ephemeral streams, by their creation via physical, salt, and chemical weathering, and by other processes such as aeolian abrasion.  相似文献   

3.
Longitudinal profiles of bedrock streams in central Kentucky, and of coastal plain streams in southeast Texas, were analyzed to determine the extent to which they exhibit smoothly concave profiles and to relate profile convexities to environmental controls. None of the Kentucky streams have smoothly concave profiles. Because all observed knickpoints are associated with vertical joints, if they are migrating it either occurs rapidly between vertical joints, or migrating knickpoints become stalled at structural features. These streams have been adjusting to downcutting of the Kentucky River for at least 1.3 Ma, suggesting that the time required to produce a concave profile is long compared to the typical timescale of environmental change. A graded concave longitudinal profile is not a reasonable prediction or benchmark condition for these streams. The characteristic profile forms of the Kentucky River gorge area are contingent on a particular combination of lithology, structure, hydrologic regime, and geomorphic history, and therefore do not represent any general type of equilibrium state. Few stream profiles in SE Texas conform to the ideal of the smoothly, strongly concave profile. Major convexities are caused by inherited topography, geologic controls, recent and contemporary geomorphic processes, and anthropic effects. Both the legacy of Quaternary environmental change and ongoing changes make it unlikely that consistent boundary conditions will exist for long. Further, the few exceptions within the study area–i.e., strongly and smoothly concave longitudinal profiles–suggest that ample time has occurred for strongly concave profiles to develop and that such profiles do not necessarily represent any mutual adjustments between slope, transport capacity, and sediment supply. The simplest explanation of any tendency toward concavity is related to basic constraints on channel steepness associated with geomechanical stability and minimum slopes necessary to convey flow. This constrained gradient concept (CGC) can explain the general tendency toward concavity in channels of sufficient size, with minimal lithological constraints and with sufficient time for adjustment. Unlike grade- or equilibrium-based theories, the CGC results in interpretations of convex or low-concavity profiles or reaches in terms of local environmental constraints and geomorphic histories rather than as “disequilibrium” features.  相似文献   

4.
《自然地理学》2013,34(6):492-510
Coarse woody debris (CWD) is an important component of headwater streams, however, few studies have investigated the geomorphic effects of CWD in the southern Appalachians. In the Great Smoky Mountains, debris slides supply large volumes of CWD and sediment to low-order streams. This study investigates the effect of CWD on bankfull channel dimensions and in-channel sediment storage along second-order streams. Comparisons are made between streams that have experienced recent debris slides and those that have not. CWD channel obstructions are larger but less frequent along debris-slide-affected streams. Dendrochronological evidence indicates that CWD can remain in channels for over 100 yr. Relatively short residence times of CWD along debris-slide-affected streams suggest that logs are frequently flushed through these streams. CWD causes channel widening along all study streams, but the volume of sediment stored in the channel behind CWD obstructions is up to four times greater than the volume of sediment represented by bank erosion associated with CWD. Two large log jams formed by debris slides at tributary junctions stored approximately 4000 m3 of sediment. Sediment stored by CWD was finer than mean bed particle size, and thus represents a significant sediment source when CWD obstructions are breached.  相似文献   

5.
The influence of relative sediment supply on riverine habitat heterogeneity   总被引:1,自引:0,他引:1  
The diversity of aquatic habitats in streams is linked to physical processes that act at various spatial and temporal scales. Two components of many that contribute to creating habitat heterogeneity in streams are the interaction between sediment supply and transport capacity and the presence of local in-stream structures, such as large woody debris and boulders. Data from previously published flume and field studies and a new field study on tributaries to the South Yuba River in Nevada County, California, USA, were used to evaluate the relationship between habitat heterogeneity, local in-stream structural features and relative sediment supply. Habitat heterogeneity was quantified using spatial heterogeneity measures from the field of landscape ecology. Relative sediment supply, as expressed by the sediment supply/transport capacity ratio, which controls channel morphology and substrate textures, two key physical habitat characteristics, was quantified using a dimensionless bedload transport ratio, q. Calculated q values were plotted against an ecologically meaningful heterogeneity index, Shannon's Diversity Index, measured for each study reach, as well as the percent area of in-stream structural elements. The results indicate two potential mechanisms for how relative sediment supply may drive geomorphic diversity in natural river systems at the reach scale. When less mobile structural elements form a small proportion of the reach landscape, the supply/capacity ratio dictates the range of sediment textures and geomorphic features observed within the reach. In these settings, channels with a moderate relative sediment supply exhibit the highest textural and geomorphic diversity. In contrast, when less mobile structural elements are abundant, forced local scour and deposition creates high habitat heterogeneity, even in the presence of high relative sediment supply.  相似文献   

6.
Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its ‘flashy’ regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall, creating a minimum of wet conditions in the catchment to activate hydrological pathways and deliver sediment to the drainage network. The BFI is also related to sediment delivery processes, as the loads are higher with lower BFI, corroborating the fact that most sediment movement is caused by stormflow and its related factors. Overall, suspended sediment yields were very low (i.e., < 1 t km− 2 yr− 1) at all measuring sites. Such values are the consequence of the limited sediment delivery attributable to soil conservation practices, low surface runoff coefficients and specific geomorphic features of groundwater-dominated rivers, such as low drainage density, low gradient, steep valley walls and flat valley floors.  相似文献   

7.
Northwestern California is prone to regional, high magnitude winter rainstorms, which repeatedly produce catastrophic floods in the basins of the northern Coast Ranges. Major floods on the Eel River in 1955 and 1964 resulted in substantial geomorphic changes to the channel, adjacent terraces, and tributaries. This study evaluated the changes and the effects of a moderate flood in 1997 through field observations and examination of aerial photographs that spanned from 1954 to 1996. The purpose was to document the nature and magnitude of geomorphic responses to these three floods and assess the rates and controls on the recovery of the Eel River and its tributaries. Channel widening from extensive bank erosion was the dominant geomorphic change along the lower Eel River during major floods. As a result of the 1964 flood, the largest amount of widening was 195 m and represented an 80% change in channel width. Channel narrowing characterized the periods after the 1955 and 1964 floods. More than 30 years after the 1964 flood, however, the river had not returned to pre-flood width, which suggests that channel recovery required decades to complete. A long recovery time is unusual given that the Eel River is located in an area with a “superhumid” climate and has an exceptionally high sediment yield. This long recovery time may reflect highly seasonal precipitation and runoff, which are concentrated in 3–5 months each winter. In contrast to the main stem of the Eel River, the dominant effects of floods on the tributaries of the Eel River were rapid aggradation of channel bed and valley floor followed by immediate downcutting. Dendrogeomorphic data, aerial photographs, and field observations indicate that thick wedges of gravel, derived largely from hillslope failures in upper reaches of the tributaries, are deposited at and immediately upstream of the mouths of tributaries as the stage of the Eel River exceeded that of the tributaries during major floods. In the waning stages of the flood, the tributaries cut through the gravel at a rate equal to the lowering of the Eel and generated unpaired terraces and nickpoints. The complete process of deposition and incision can occur within a few days of peak discharge. Although reworking of some sediment on the valley floor may continue for years after large floods, channel morphology in the tributaries appears to be a product of infrequent, high magnitude events. The morphology of the tributary channel also appears to be greatly influenced by the frequency and magnitude of mass wasting in headwater areas of small basins.  相似文献   

8.
《Basin Research》2018,30(Z1):15-35
Nearly all successions of the near‐shore strata exhibit cyclical movements of the shoreline, which have commonly been attributed to cyclical oscillations in relative sea level (combining eustasy and subsidence) or, more rarely, to cyclical variations in sediment supply. It has become accepted that cyclical change in sediment delivery from source catchments may lead to cyclical movement of boundaries such as the gravel front, particularly in the proximal segments of sediment‐routing systems. In order to quantitatively assess how variations in sediment transport as a consequence of change in relative sea‐level and surface run‐off control stratigraphic architecture, we develop a simple numerical model of sediment transport and explore the sensitivity of moving boundaries within the sediment‐routing system to change in upstream (sediment flux, precipitation rate) and downstream (sea level) controls. We find that downstream controls impact the shoreline and sand front, while the upstream controls can impact the whole system depending on the amplitude of change in sediment flux and precipitation rate. The model implies that under certain conditions, the relative movement of the gravel front and shoreline is a diagnostic marker of whether the sediment‐routing system experienced oscillations in sea level or climatic conditions. The model is then used to assess the controls on stratigraphic architecture in a well‐documented palaeo‐sediment‐routing system in the Late Cretaceous Western Interior Seaway of North America. Model results suggest that significant movement of the gravel front is forced by pronounced (±50%) oscillations in precipitation rate. The absence of such movement in gravel front position in the studied strata implies that time‐equivalent movement of the shoreline was driven by relative sea‐level change. We suggest that tracking the relative trajectories of internal boundaries such as the gravel front and shoreline is a powerful tool in constraining the interpretation of stratigraphic sequences.  相似文献   

9.
S.S. Li  R.G. Millar  S. Islam   《Geomorphology》2008,95(3-4):206-222
A two-dimensional (2D) numerical hydrodynamic-morphological model is developed to investigate gravel transport and channel morphology in a large wandering gravel-bed river, the Fraser River Gravel Reach, in British Columbia, Canada. The model takes into count multi-fraction bedload transport, including the effects of surface coarsening, hiding and protrusion. Model outputs together with river discharge statistics were analyzed, producing distributed sediment budget and well-defined, localised zones of aggradation and degradation along the gravel reach. Long-term channel response to gravel extraction from aggrading zones as a flood hazard mitigation measure was also investigated numerically to assess the effectiveness of such an extraction. The total computed sediment budget agrees well with results based on field measurements of gravel transport available to us. This study points to the importance of a number of factors to bedload predictions: the gravel-to-sand ratio, the adequacy of resolving the wandering planform, and the distinction between bed shear stress driving bedload transport and bed resistance on the flow. These are in addition to the physical processes governing the flow field and gravel mobilization. The methodology presented in this paper can provide a scientific basis for gravel management including monitoring and extraction in order to maintain adequate flood protection and navigation, while preserving the ecosystem.  相似文献   

10.
The objectives of this study were: (1) to document spatial and temporal distributions of large woody debris (LWD) at watershed scales and investigate some of the controlling processes; and (2) to judge the potential for mapping LWD accumulations with airborne multispectral imagery. Field surveys were conducted on the Snake River, Soda Butte Creek, and Cache Creek in the Greater Yellowstone Ecosystem, USA. The amount of woody debris per kilometer is highest in 2nd order streams, widely variable in 3rd and 4th order streams, and relatively low in the 6th order system. Floods led to increases in woody debris in 2nd order streams. Floods redistributed the wood in 3rd and 4th order streams, removing it from the channel and stranding it on bars, but appeared to generate little change in the total amount of wood throughout the channel system. The movement of woody debris suggests a system that is the reverse of most sediment transport systems in mountains. In 1st and 2nd order tributaries, the wood is too large to be moved and the system is transport-limited, with floods introducing new material through undercutting, but not removing wood through downstream transport. In the intermediate 3rd and 4th order channels, the system displays characteristics of dynamic equilibrium, where the channel is able remove the debris at approximately the same rate that it is introduced. The spatial distribution and quantity of wood in 3rd and 4th order reaches varies widely, however, as wood is alternatively stranded on gravel bars or moved downstream during periods of bar mobilization. In the 6th order and larger channels, the system becomes supply-limited, where almost all material in the main stream can be transported out of the central channel by normal stream flows and deposition occurs primarily on banks or in eddy pool environments. Attempts to map woody debris with 1-m resolution digital four-band imagery were generally unsuccessful, primarily because the imagery could not distinguish the narrow logs within a pixel from the surrounding sand and gravel background and due to problems in precisely coregistering imagery and field maps.  相似文献   

11.
The extensive Gangetic alluvial plains are drained by rivers which differ strongly in terms of hydrological and sediment transport characteristics. These differences are manifested in the geomorphic diversity of the plains. The Western Gangetic Plains (WGP) are marked by a degradational topography with incised channels and extensive badland development in some parts, while the Eastern Gangetic Plains (EGP) are characterized by shallow, aggrading channels with frequent avulsions and extensive flooding. We interpret such geomorphic diversity in terms of differences in stream power and sediment supply from the catchment areas. The rivers draining the western plains are marked by higher stream power and lower sediment yield that result in degradation. In comparison, the rivers draining the eastern Gangetic Plains have lower stream power and higher sediment yield that result in aggradation. The variation of stream power, a function of channel slope and high sediment yield, is attributed to differences in rainfall and rate of uplift in the hinterland. It is suggested that such differences have resulted in a marked geomorphic diversity across the plains. It is also suggested that such diversity has existed for a fairly long time because of climatic and tectonic variance.  相似文献   

12.
Woody vegetation affects channel morphogenesis in Ozark streams of Missouri and Arkansas by increasing local roughness, increasing bank strength, providing sedimentation sites, and creating obstructions to flow. Variations in physiographic controls on channel morphology result in systematic changes in vegetation patterns and geomorphic functions with increasing drainage basin area. In upstream reaches, streams have abundant bedrock control and bank heights that typically are less than or equal to the rooting depth of trees. In downstream reaches where valleys are wider and alluvial banks are higher vegetation has different geomorphic functions. At drainage areas of greater than 100–200 kM2, Ozarks streams are characterized by longitudinally juxtaposed reaches of high and low lateral channel migration rates, referred to as disturbance reaches and stable reaches, respectively. Whereas stable reaches can develop stable forested floodplains (if they are not farmed), disturbance reaches are characterized by dynamic vegetation communities that interact with erosion and deposition processes.Disturbance reaches can be subdivided into low-gradient and high-gradient longitudinal zones. Low-energy zones are characterized by incremental, unidirectional lateral channel migration and deposition of gravel and sand bars. The bars are characterized by prominent bands of woody vegetation and ridge and swale topography. Channel monitoring data indicate that densely vegetated bands of woody vegetation formed depositional sites during bedload-transporting events. The same floods caused up to 20 m of erosion of adjacent cutbanks, scoured non-vegetated areas between vegetation bands, and increased thalweg depth and definition. In high-energy (or riffle) zones, channel movement is dominantly by avulsion. In these zones, vegetation creates areas of erosional resistance that become temporary islands as the channel avulses around or through them. Woody vegetation on islands creates steep, root-defended banks that contribute to narrow channels with high velocities.Calculation of hydraulic roughness from density and average diameter of woody vegetation groups of different ages indicates that flow resistance provided by vegetation decreases systematically with group age, mainly through decreasing stem density. If all other factors remain constant, the stabilizing effect of a group of woody vegetation on a gravel bar decreases with vegetation age.  相似文献   

13.
This paper provides data on the landforms, soils, and sediments within a unique northern Michigan landscape known as the Grayling Fingers, and evaluates these data to develop various scenarios for the geomorphic development of this region. Composed of several large, flat-topped ridges that trend N–S, the physiography of the “Fingers” resembles a hand. Previously interpreted as “remnant moraines”, the Grayling Fingers are actually a Pleistocene constructional landscape that was later deeply incised by glacial meltwater. The sediments that comprise the Fingers form a generally planar assemblage, with thick (>100 m), sandy glacial outwash forming the lowest unit. Above the outwash are several meters of till that is remarkably similar in texture to the outwash below; thus, the region is best described as an incised ground moraine. Finally, a thin silty “cap” is preserved on the flattest, most stable uplands. This sediment package and the physiography of the Fingers are suggestive of geomorphic processes not previously envisioned for Michigan.Although precise dates are lacking, we nonetheless present possible sequences of geomorphic/sedimentologic processes for the Fingers. This area was probably a topographic high prior to the advance of marine isotope stage 2 (Woodfordian) ice. Much of the glacial outwash in the Fingers is probably associated with a stagnant, early Woodfordian ice margin, implying that this interlobate area remained ice-free and ice-marginal for long periods during stage 2. Woodfordian ice eventually covered the region and deposited 5–10 m of sandy basal till over the proglacial outwash plain. Small stream valleys on the outwash surface were palimpsested onto the till surface as the ice retreated, as kettle chains and as dry, upland valleys. The larger of these valleys were so deeply incised by meltwater that they formed the large, through-flowing Finger valleys. The silt cap that occupies stable uplands was probably imported into the region, while still glaciated. The Fingers region, a col on the ice surface, could have acted as a collection basin for silts brought in as loess or in superglacial meltwater. This sediment was let down as the ice melted and preserved only on certain geomorphically stable and fluvially isolated locations. This study demonstrates that the impact of Woodfordian ice in this region was mostly erosional, and suggests that Mississippi Valley loess may have indirectly impacted this region.  相似文献   

14.
提高黄河下游游荡段的输沙能力是河道治理的主要任务,而河道输沙效率(排沙比)受到来水来沙条件和河床边界条件的共同影响。本文基于1971—2016年花园口—高村河段(简称花高段)的实测水沙及地形资料,计算了花高段的平均河相系数及水沙条件(来沙系数和水流冲刷强度),从汛期和场次洪水2个时间尺度,定量分析了排沙比与水沙条件及前一年汛后主槽形态之间的响应关系。分析结果表明:① 汛期和场次洪水排沙比与来沙系数呈负相关,与水流冲刷强度呈正相关,临界的汛期不淤来沙系数为0.012 kg?s/m 6,场次洪水排沙比与来沙系数及水量比的决定系数为0.76;② 游荡段排沙比与河相系数呈负相关,当河相系数大于15 /m 0.5时,河段排沙比基本小于1;③ 以来沙系数与河相系数为自变量的汛期排沙比计算式的决定系数为0.82,计算精度较高,对于场次洪水排沙比而言,断面形态的影响权重大于来沙系数。这些排沙比计算公式能够反映游荡段的输沙特点,有助于定量掌握断面形态及水沙条件对河道输沙能力的影响。  相似文献   

15.
The hydraulic and sedimentary characteristics of the spawning habitat of Atlantic salmon (Salmo salar) in tributary and mainstem locations in a river system in north-east Scotland are described. Salmon used spawning sites with a relatively wide range in sediment characteristics, although measures of central tendency were all in the gravel (2–64 mm) size-class. The dominant factor differentiating the sediment characteristics of study sites was the level of fine sediment, which accounted for significant differences between tributary and mainstem samples. The ranges of depth and velocity in areas used for spawning by salmonids were found to be similar in all tributary study sites. However, due to the interdependence of depth and velocity, major differences were observed between tributary and mainstem study sites in that spawning in larger streams tended to be associated with deeper, faster flowing water. Spawning locations were shown to have similar Froude number, despite different sized streams and species of salmonid. Due to its dimensionless nature and significance in characterising flow hydraulics, the Froude number is proposed as a potentially useful variable for describing the habitat of aquatic organisms.  相似文献   

16.
The distribution of riparian vegetation in relation to channel morphology is poorly understood in canyon rivers, which are characterized by in-channel fluvial sediment deposits rather than flood plains. This study focuses on vegetation and sandbar characteristics in two reaches of the lower Little Colorado River canyon in Arizona–one reach with ephemeral flow from the watershed, and another with perennial baseflow from a spring. Both reaches have been colonized by the exotic Tamarix chinensis, a riparian species known for its geomorphic influence on river channels. On the basis of a sampling of 18 bars, results show that vegetation frequency and density is significantly greater in the perennial study reach. However, sandbar morphology variables do not differ between reaches, despite a significantly narrower and deeper ephemeral channel. Hydraulic calculations of flood depths and Pearson correlations between bar and vegetation variables indicate reach-specific biogeomorphic relationships. In the ephemeral reach, higher bars are less affected by flood inundation, support older vegetation, and may be more stable habitat for vegetation. In the wider perennial reach where bars are lower and more expansive, vegetation patterns relate to bar size, Tamarix being most common on the largest bars. Overall results suggest that (1) vegetation variation relates to baseflow hydrology, (2) bar formation relates to high discharge events, and (3) vegetation patterns respond to, rather than influence, sandbar form in this canyon riparian system.  相似文献   

17.
Impacts of colonial settlement upon catchment-scale fluvial geomorphic relationships are reported for a relatively small catchment in northern Rio de Janeiro State, Brazil. Structural controls have induced the type and patterns of rivers in Macaé Basin. Fault block activity has resulted in steep, incised headwater streams above the escarpment. Confined and partly confined rivers in mid-catchment reaches of the rounded foothills have limited potential for geomorphic adjustment. Fluvial, estuarine and marine sediments in low relief landscapes of the lowland plain have supported the development of meandering sand bed rivers, with many cut-and-fill (intact valley fill) deposits in tributary systems. Indigenous people exerted relatively minor, localized impacts upon the geomorphology of this river system. Portuguese settlement since the sixteenth century brought about clearance of much of the Atlantic Forest of lowland reaches, and subsequent establishment of sugar cane and coffee plantations. Lowland reaches were channelized from the 1940s-1980s for flood protection and to support the expansion of pastoral agriculture. Significant adjustments have occurred to these geomorphologically sensitive reaches. In contrast, although rivers in the rounded foothills were impacted by forest clearance, the limited availability of sediment stores along these reaches has limited the extent of geomorphic responses to human disturbance. Relatively inaccessible upland reaches were even less impacted, and are now major conservation areas. Building on principles of the River Styles framework, catchment-scale evolutionary trajectories of rivers in the Macaé Basin are assessed based on analysis of patterns of river types, their capacity for adjustment and connectivity relationships, and responses to disturbance events. From this, three future scenarios of prospective evolutionary traits are developed: a ‘steady as she goes’ scenario, an optimistic (effective, proactive management) scenario, and a ‘doomsday’ scenario.  相似文献   

18.
Large wood frequency and volume were examined as a function of landscape characteristics at different spatial and temporal scales in 50 reaches of the Upper Little Tennessee River basin with drainage areas ranging from 0.3 to 30.1 km2. Riparian forest cover was described laterally at the reach scale and longitudinally 1 km upstream in all tributaries. Riparian cover was analyzed with geomorphic and additional landscape variables to isolate factors that most influence wood in streams. Forested area immediately surrounding the reach was the strongest predictor of wood frequency and volume, although upstream riparian cover can explain additional variation in wood distributions. An optimal forested buffer width around the stream for large wood was not evident. The relationship between the riparian forest and wood weakens in bigger channels, as fluvial transport of pieces increases. Resurveys demonstrate that large wood is most dynamic in wide, forested reaches and changes function during floods to store sediment and organic matter.  相似文献   

19.
人工卵石床面风沙流粒度特征   总被引:1,自引:0,他引:1  
张正偲  董治宝 《中国沙漠》2014,34(3):639-644
沉积物粒径分布对风沙沉积物的起动、输送和沉降过程十分重要。不同粒径的风沙沉积物空气动力学特征不同,从而导致其起动机理、输送过程和沉降模式不同。因此,粒度可以作为风沙沉积过程的指示器。戈壁是西北地区的一种重要地貌景观,戈壁风沙流是风沙物理研究的内容之一,但目前研究较少,特别是对戈壁风沙流粒度分布的研究,几乎没有报道。本文利用人工卵石床面模拟戈壁地表,对0.25、0.5、1 m和2 m高度的风沙流粒度特征进行观测,结果表明:沙源、地表状况、风程效应等影响沙粒粒径随高度的变化。沙源近,平均粒径随高度先减小后增加;沙源远,平均粒径随高度增加减小。戈壁表面的不同区域,沙粒粒径级配不同:随高度增加,粗砂,中砂含量降低,细砂、极细砂和粉砂含量增加;随距离增加,中砂含量降低,细砂、极细砂和粉砂含量增加。平均粒径越大,分选越好,偏度越趋于正偏,峰度越趋于变宽。偏度、峰度随分选系数增加而增加。峰度随偏度增加而增加。  相似文献   

20.
Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges (“cheniers”) that have elevations of up to 4 m.In this study, the term “ridge” is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit.To understand the long-term evolution of a coastal depositional system, primary process–response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism (Ω) and quantity of littoral transport (Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed.Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299–306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits).A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level. Consequently, the geneses of three different ridge types (transgressive, regressive, and laterally accreted) typically occur contemporaneously along the same shoreline at different locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号