首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Preservation of particulate non-lithogenic uranium in marine sediments   总被引:1,自引:0,他引:1  
Particulate non-lithogenic uranium (PNU), excess U above detrital background levels found in marine particulate matter, is formed in surface waters throughout the ocean. Previous studies have shown that PNU is regenerated completely prior to burial of particles in sediments within well-oxygenated open-ocean regions. However, the fate of PNU has never been examined in ocean margin regions or in anoxic basins. Here we evaluate the preservation of PNU in ocean margin sediments and within semi-enclosed basins using samples from sediment traps deployed at multiple depths and surface sediments. Organic carbon fluxes at the sediment trap locations ranged from 0.1 to 4.3 g/cm2 kyr, while the dissolved oxygen concentration in the water column ranged from <3 μM to ∼ 270 μM. Preservation of PNU increases with decreasing dissolved oxygen concentration, approaching 100% preservation at oxygen concentration < 25 μM. PNU contributes as much as 40 to 70% of the total authigenic U in sediments in the Santa Barbara Basin and seasonally anoxic Saanich Inlet, and some 10% to 50% of the total authigenic U in sediments off the central California Margin.  相似文献   

2.
Pore water and solid phase data for redox-sensitive metals (Mn, Fe, V, Mo and U) were collected on a transect across the Peru upwelling area (11°S) at water depths between 78 and 2025 m and bottom water oxygen concentrations ranging from ∼0 to 93 μM. By comparing authigenic mass accumulation rates and diffusive benthic fluxes, we evaluate the respective mechanisms of trace metal accumulation, retention and remobilization across the oxygen minimum zone (OMZ) and with respect to oxygen fluctuations in the water column related to the El Niño Southern Oscillation (ENSO).Sediments within the permanent OMZ are characterized by diffusive uptake and authigenic fixation of U, V and Mo as well as diffusive loss of Mn and Fe across the benthic boundary. Some of the dissolved Mn and Fe in the water column re-precipitate at the oxycline and shuttle particle-reactive trace metals to the sediment surface at the lower and upper boundary of the OMZ. At the lower boundary, pore waters are not sufficiently sulfidic as to enable an efficient authigenic V and Mo fixation. As a consequence, sediments below the OMZ are preferentially enriched in U which is delivered via both in situ precipitation and lateral supply of U-rich phosphorites from further upslope. Trace metal cycling on the Peruvian shelf is strongly affected by ENSO-related oxygen fluctuations in bottom water. During periods of shelf oxygenation, surface sediments receive particulate V and Mo with metal (oxyhydr)oxides that derive from both terrigenous sources and precipitation at the retreating oxycline. After the recurrence of anoxic conditions, metal (oxyhydr)oxides are reductively dissolved and the hereby liberated V and Mo are authigenically removed. This alternation between supply of particle-reactive trace metals during oxic periods and fixation during anoxic periods leads to a preferential accumulation of V and Mo compared to U on the Peruvian shelf. The decoupling of V, Mo and U accumulation is further accentuated by the varying susceptibility to re-oxidation of the different authigenic metal phases. While authigenic U and V are readily re-oxidized and recycled during periods of shelf oxygenation, the sequestration of Mo by authigenic pyrite is favored by the transient occurrence of oxidizing conditions.Our findings reveal that redox-sensitive trace metals respond in specific manner to short-term oxygen fluctuations in the water column. The relative enrichment patterns identified might be useful for the reconstruction of past OMZ extension and large-scale redox oscillations in the geological record.  相似文献   

3.
Trace metals (Mn, Fe, Mo, U, Cr, V) were studied in pore waters of an intertidal flat located in the German Wadden Sea. The study system is an example of a permeable tidal flat system where pore water exchange is affected by tidal driven pressure gradients besides diffusion. Permanently installed in situ samplers were used to extract pore waters down to 5 m depth throughout one year. The samplers were either located close to the tidal flat margin or in central parts of the tidal flat. Despite dynamic sedimentological and hydrological conditions, the general trends with depth in deep tidal flat pore waters are remarkably similar to those observed in deep sea environments. Rates of trace metal cycling must be comparably large in order to maintain the observed pore water profiles. Trace metals further show similar general trends with depth close to the margin and in central parts of the tidal flat. Seasonal sampling revealed that V and Cr vary concurrent with seasonal changes in dissolved organic carbon (DOC) concentration. This effect is most notable close to the tidal flat margin where sulphate, DOC, and nutrients vary with season down to some metres depth. Seasonal variations of Mn, Fe, Mo, and U are by contrast limited to the upper decimetres of the sediment. Their seasonal patterns depend on organic matter supply, redox stratification, and particulate matter deposited on sediment surfaces. Pore water sampling within one tidal cycle provides evidence for pore water advection in margin sediments. During low tide pore water flow towards the creekbank is generated by a hydraulic gradient suggesting that deep pore waters may be seeping out of creekbank sediments. Owing to the enrichment of specific elements like Mn in pore water compared to sea water, seeping pore waters may have an impact on the chemistry of the open water column. Mass balance calculations reveal that the impact of deep pore waters on the Mn budget in the open water column is below 4%. Mn deep pore water discharge of the whole Wadden Sea is estimated to be about 9% of the total dissolved riverine Mn input into the Southern North Sea.  相似文献   

4.
The lLate Miocene Chagres Formation from northern Panama contains the youngest outcrops of the Panama Canal Basin. Here we report two chondrichthyan assemblages that include 30 taxa from both the Rio Indio and Chagres Sandstone Members of the Chagres Formation. We report 18 new fossil records for Panama and four for tropical America, constituting the most diverse chondrichthyan association for the Cenozoic of Panama. We performed a paleobathymetry analysis based on the modern water depth preference of extant chondrichthyan taxa. The assemblage from the Rio Indio Member is characterized by taxa with neritic affinities, suggesting depths <100 m, whereas the assemblage from the Chagres Sandstone Member is dominated by taxa with oceanic affinities, suggesting 200–300 m water depths. The Chagres Sandstone Member could have accumulated at the edge of a platform–upper slope, bordered by a deep oceanic margin.  相似文献   

5.
A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins   总被引:1,自引:0,他引:1  
Pelagic redoxclines of anoxic basins and deeps form the suboxic transition between oxygenated surface and anoxic or even sulfidic bottom waters. Intense element cycling, favoured by elevated microbial activity, causes steep gradients of physico-chemical parameters, nutrients and redox-sensitive trace metals. This study presents a conceptual model for authigenic particle formation at pelagic redoxclines, which is based on the tight coupling of Mn, Fe, and P cycles. Besides the well-known occurrence of Mn-oxides, textural (SEM-EDX) and geochemical (ICP-OES, ICP-MS) analyses of particles from the redoxclines of the Black Sea and the Baltic Sea (Gotland Basin, Landsort Deep) evidence the existence of earlier postulated Fe-oxyhydroxo-phosphates and emphasize mixed phases consisting of Mn-oxides and Fe-oxyhydroxo-phosphates as a new solid species. Most of the analyzed particles are star-shaped, of about 5 μm in size, and occur as single particles or aggregates without any morphological differences between Mn-oxides, Fe-oxyhydroxo-phosphates, and mixed phases. Throughout the redoxcline, these minerals show a general succession with maximum abundance of Mn-oxides above the redoxcline followed by mixed phases and almost pure Fe-phosphates within and below the redoxcline, respectively. Molar Fe/P ratios of single particles argue against the formation of known pure Fe-phosphates like vivianite or strengite at the lower end of the redox transition zone, but are consistent with recent experimental findings for colloidal P-bearing hydrous ferric oxides. Moreover, morphological similarities suggest the formation of irregular Fe-oxyhydroxo coatings due to oxidation of upward diffusing Fe2+ by oxygen and stepwise replacement of Mn(IV) by Fe(III) on sinking MnOx particles followed by immediate adsorption or even co-precipitation of phosphate. Batch-type experiments using biogenic MnOx particles demonstrate the efficient potential of Fe2+ oxidation by sinking MnOx particles. When entering sulfidic waters MnOx particles are progressively reduced leading to an increasing relative abundance of Fe- and P-rich particles. In deeper parts of the water column these particles are also reductively dissolved, thereby releasing Fe2+ and phosphate to the water column. This Mn-Fe-P-shuttle likely affects phosphate transport throughout the water column and thus impacts primary production at least over longer time scales. Furthermore, the particulate Mn-Fe-P-shuttle must have played an important role for the cycling of P and certain trace metals in ancient ocean basins, e.g., during certain periods of Cretaceous black shale formation and should be considered in future mass balances and modeling approaches dealing with oxic/anoxic interfaces of aquatic ecosystems.  相似文献   

6.
The results of more than 40 years long authors’ investigations in the field of the freshwater (river input) and marine (ocean waters) hydrospheres are summarized. The latest estimations of the global average concentrations of many chemical elements in river water and suspended matter and in ocean water and suspended matter are presented. It is shown that particulate suspended forms of many elements are predominant in river waters (“rivers are the kingdom of suspended forms of elements”), while their dissolved forms prevail in ocean waters (“ocean is the kingdom of dissolved forms of elements”). Sedimentary and biogeochemical processes of the river material transformation in the river-sea mixing zone (the so-called “marginal filter of the ocean”) were studied thoroughly. It was shown that radical quantitative and qualitative changes of dissolved and particulate suspended substances take place in this zone, resulting in the governed transformation of dissolved forms into suspended particulate forms and their following deposition on the bottom. The first data on the losses of 35 chemical elements in the river-sea mixing zone are presented. These data prove that the concentrations of dissolved elements in river and ocean waters are in regular and close relationship with their losses in the river-sea mixing zone and with the types of element distribution in ocean water column (conservative, biogenic, and lithogenic). This indicates the existence of a geochemical system in the entire (freshwater and marine) hydrosphere, which calls for deep and detailed investigations.  相似文献   

7.
Remobilization of authigenic uranium in marine sediments by bioturbation   总被引:1,自引:0,他引:1  
Uranium behaves as a nearly conservative element in oxygenated seawater, but it is precipitated under chemically reducing conditions that occur in sediments underlying low-oxygen bottom water or in sediments receiving high fluxes of particulate organic carbon. Sites characterized by a range of bottom-water oxygen (BWO) and organic carbon flux (OCF) were studied to better understand the conditions that determine formation and preservation of authigenic U in marine sediments. Our study areas are located in the mid latitudes of the northeast Pacific and the northwest Atlantic Oceans, and all sites receive moderate (0.5 g/cm2 kyr) to high (2.8 g/cm2 kyr) OCF to the sediments. BWO concentrations vary substantially among the sites, ranging from <3 to ∼270 μM. A mass balance approach was used to evaluate authigenic U remobilization at each site. Within each region studied, the supply of particulate nonlithogenic U associated with sinking particles was evaluated by means of sediment traps. The diffusive flux of U into sediments was calculated from pore-water U concentration profiles. These combined sources were compared with the burial rate of authigenic U to assess the efficiency of its preservation. A large fraction (one-third to two-thirds) of the authigenic U precipitated in these sediments via diffusion supply is later regenerated, even under very low BWO concentrations (∼15 μM). Bioturbating organisms periodically mix authigenic U-containing sediment upward toward the sediment-water interface, where more oxidizing conditions lead to the remobilization of authigenic U and its loss to bottom waters.  相似文献   

8.
Sedimentary biomarker distributions can record ocean productivity and community structure, but their interpretation must consider alteration during organic matter (OM) export and burial. Large changes in the water column redox state are known to impact on the preservation of biomarkers, but more subtle variation in sediment redox conditions, characteristic of major modern ocean basins, have been less thoroughly investigated. Here we evaluate changes in biomarker distributions during sinking and burial across a nearshore to offshore transect in the southwestern Cape Basin (South East Atlantic), which includes a range of sedimentary environments. Biomarker concentrations and distributions in suspended particulate matter from the upper water column were determined and compared with underlying sedimentary biomarker accumulation rates and distributions. Biomarker distributions were similar in surface and subsurface waters, indicating that the OM signature is exported from the ocean mixed layer with minimal alteration. We show that, while export production (100 m) is similar along this transect, 230Thxs-corrected biomarker accumulation rate varies by over an order of magnitude in sediments and is directly associated with sedimentary redox conditions, ranging from oxic to nitrogenous–ferruginous. Biomarker distributions were dominated by sterols in surface water, and by alkenones in underlying sediments, which we propose to be primarily the result of selective preservation. Notably, the difference in sediment O2 penetration depth was associated with relative biomarker preservation. Subtle variation in sedimentary redox conditions has a dramatic impact on the distribution of preserved biomarkers. We discuss mechanisms for preferential degradation of specific biomarkers within this setting.  相似文献   

9.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

10.
A section through the late Archean Mt. McRae Shale comprising, in ascending order, a lower shale interval (LSI), a banded iron formation (BIF), an upper shale (USI) and a carbonate (C1) has been analyzed for total Fe and Al contents and authigenic Fe present as carbonate, oxide, sulfide and silicate phases. The authigenic mineralogy is controlled by the episodic addition of Fe from hydrothermal activity and removal of Fe by sulfide, relative to rates of clastic sedimentation. The LSI and BIF have mean FeT/Al values of 2 and 5, respectively, that record iron enrichment from hydrothermal sources. Iron was precipitated primarily as siderite accompanied by Fe-rich chlorite from anoxic bottom waters rich in dissolved Fe. Pyrite formation was probably limited by the availability of sulfate, which was present at low concentrations and became rapidly depleted. The USI has generally lower FeT/Al values (0.6-1.3), similar to those found in Paleozoic shales, with the exception of one interval where enrichment may reflect either a weak hydrothermal source or the operation of an iron shuttle. This interval contains authigenic Fe predominantly as pyrite, where high values for DOP (>0.8) indicate the existence of a water column that became rich in dissolved sulfide (euxinic) when sulfate concentrations increased due to a transient or secular increase in ocean/atmosphere oxygenation. High concentrations of dissolved sulfide maintained low concentrations of dissolved Fe, which allowed only minor amounts of Fe to be precipitated as carbonates and silicates. The USI also has elevated concentrations of organic matter that most probably reflect increased productivity and likely limited euxinia to midportions of the water column on the basin margin. The carbonate C1 represents a basinal chemistry where sulfide has been removed and FeT/Al values are ∼1 indicating that hydrothermal activity again produced dissolved Fe-rich bottom waters. Detailed iron speciation of the Mt. McRae Shale can be used to recognize spatial and temporal variations in iron and sulfur inputs to the late Archean Hamersley Basin, just prior to the Paleoproterozoic rise in atmospheric oxygenation, and our refined methods have relevance to all Fe-rich deposits.  相似文献   

11.
Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6% and -32.9% and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.  相似文献   

12.
We evaluate anaerobic oxidation of methane (AOM) in the Black Sea water column by determining distributions of archaea-specific glyceryl dialkyl glyceryl tetraethers (GDGTs) and 13C isotopic compositions of their constituent biphytanes in suspended particulate matter (SPM), sinking particulate matter collected in sediment traps, and surface sediments. We also determined isotopic compositions of fatty acids specific to sulfate-reducing bacteria to test for biomarker and isotopic evidence of a syntrophic relationship between archaea and sulfate-reducing bacteria in carrying out AOM. Bicyclic and tricyclic GDGTs and their constituent 13C-depleted monocyclic and bicyclic biphytanes (down to −67‰) indicative of archaea involved in AOM were present in SPM in the anoxic zone below 700 m depth. In contrast, GDGT-0 and crenarchaeol derived from planktonic crenarchaeota dominated the GDGT distributions in the oxic surface and shallow anoxic waters. Fatty acids indicative of sulfate-reducing bacteria (i.e., iso- and anteiso-C15) were not strongly isotopically depleted (e.g., −32 to −25‰), although anteiso-C15 was 5‰ more depleted in 13C than iso-C15. Our results suggest that either AOM is carried out by archaea independent of sulfate-reducing bacteria or those sulfate-reducing bacteria involved in a syntrophy with methane-oxidizing archaea constitute a small enough fraction of the total sulfate-reducing bacterial community that an isotope depletion in their fatty acids is not readily detected. Sinking particulate material collected in sediment traps and the underlying sediments in the anoxic zone contained the biomarker and isotope signature of upper-water column archaea. AOM-specific GDGTs and 13C-depleted biphytanes characteristic of the SPM in the deep anoxic zone are not incorporated into sinking particles and are not efficiently transported to the sediments. This observation suggests that sediments may not always record AOM in overlying euxinic water columns and helps explain the absence of AOM-derived biomarkers in sediments deposited during past periods of elevated levels of methane in the ocean.  相似文献   

13.
Authigenic clays are an important control on reservoir quality in lacustrine carbonates but remain challenging to predict. Lacustrine depositional systems respond to climatic variations in rainfall, surface runoff and groundwater input, and evaporation, and result in rapid and frequent changes in lake volume; this is expressed through changing water depth and shoreline position. In the upper portion of the Early Palaeocene Yacoraite Formation of the Salta Basin in Argentina, extensive lacustrine deposits were deposited during the sag phase of rifting. Prior high-resolution stratigraphic studies have suggested that climatic factors control microbial carbonate sequences within a ‘balanced fill’ lake, with variation in the lake level having a major influence on facies association changes. This study characterizes the evolution of facies and mineralogy within the Yacoraite Formation, focusing on the distribution of clay minerals, making a link between the high, medium and low-frequency sequence stratigraphic cycles. The low-frequency transgressive hemicycle of the upper portion of the Yacoraite Formation is comprised of abundant siliciclastic facies, suggesting a wetter period. Microbialites occurring in this interval are coarse-grained and agglutinated. Detrital clay minerals such as illite and chlorite and associated siliciclastic sediments were input to the lake during high-frequency transgressive periods. During high-frequency regressive hemicycles, sedimentation was dominated by carbonate facies with Ca-rich dolomite and the authigenic clays are comprised of chlorite/smectite mixed-layers. By contrast, the low frequency regressive hemicycle records fine-grained agglutinated microbialite with horizons of fibrous calcite, more stoichiometric dolomite, barite and authigenic magnesian smectite. This indicates elevated ion concentrations in the lake under intense evaporation during an arid period. Understanding the conditions that are favourable for formation and preservation of authigenic clays within the lacustrine environment can improve understanding of reservoir quality in comparable economically important deposits.  相似文献   

14.
High-resolution δ13CCARB analysis of the Permian–Triassic boundary (PTB) interval at the Laolongdong section, Beibei, near the city of Chongqing, south China, encompasses the latest Permian and earliest Triassic major facies changes in the South China Block (SCB). Microbialites form a distinctive unit in the lowermost 190 cm above the top of the Changhsing Formation (latest Permian) at Laolongdong, comparable to a range of earliest Triassic sites in low latitudes in the Tethyan area. The data show that declining values of δ13CCARB, well-known globally, began at the base of the microbialite. High positive values (+3 to 4 ppt) of δ13CCARB in the Late Permian are interpreted to indicate storage of 12C in the deep waters of a stratified ocean, that was released during ocean overturn in the earliest Triassic, contributing to the distinctive fall in isotope values; this interpretation has been stated by other authors and is followed here. The δ13CCARB curve shows fluctuations within the microbialite unit, which are not reflected in the microbialite structure. Comparisons between microbialite branches and adjacent micritic sediment show little difference in δ13CCARB, demonstrating that the microbialite grew in equilibrium with surrounding seawater. The Early Triassic microbialites are interpreted to be a response to upwelling of bicarbonate-rich poorly oxygenated water in low latitudes of Tethys Ocean, consistent with current ocean models for the PTB interval. However, the decline of δ13CCARB may be due to a combination of processes, including productivity collapse resulting from mass extinction, return of deep water to ocean surface, oxidation of methane released from methane hydrate destabilisation, and atmospheric deterioration. Nevertheless, build-up of bicarbonate-rich anoxic deep waters may be expected as a result of the partial isolation of Tethys, due to continental geography; release of bicarbonate-rich deep water, by ocean upwelling, in the earliest Triassic may have been an inevitable consequence of this combination of circumstances.  相似文献   

15.
Trace metal clean techniques were used to sample Hawaii Ocean Time-series (HOT) station ALOHA on seven occasions between November 1998 and October 2002. On three occasions, full water-column profile samples were obtained; on the other four occasions, surface and near-surface euphotic zone profiles were obtained. Together with three other published samplings, this site may have been monitored for “dissolved” (≤0.4 or ≤0.2 μm) Fe more frequently than any other open ocean site in the world.Low Fe concentrations (<0.1 nmol kg−1) are seen in the lower euphotic zone, and Fe concentrations increase to a maximum in intermediate waters. In the deepwaters (>2500 m), the concentrations we observe (0.4-0.5 nmol kg−1) are significantly lower than some other deep North Pacific stations but are similar to values that have been reported for a station 350 miles to the northeast. We attribute these low deepwater values to transport of low-Fe Antarctic Bottom Water into the basin and a balance between Fe regeneration and scavenging in the deep water. Near-surface waters have higher Fe levels than observed in the lower euphotic zone. Significant temporal variability is seen in near-surface Fe concentrations (ranging from 0.2-0.7 nmol kg−1); we attribute these surface Fe fluctuations to variable dust deposition, biological uptake, and changes in the mixed layer depth. This variability could occur only if the surface layer Fe residence time is less than a few years, and based on that constraint, it appears that a higher percentage of the total Fe must be released from North Pacific aerosols compared to North Atlantic aerosols. Surprisingly, significant temporal variability and high particulate Fe concentrations are observed for intermediate waters (1000-1500 m). These features are seen in the depth interval where high δ3He from the nearby Loihi Seamount hydrothermal fields has been observed; the total Fe/3He ratio implies that the hydrothermal vents are the source of the high and variable Fe.The vertical profile of Mn at ALOHA qualitatively resembles other North Pacific Mn profiles with surface and intermediate water maxima, but there are some significant quantitative differences from other reported profiles. The ≤0.4 μm Mn concentration is highest near the surface, decreases sharply in the upper 500 m, then shows an intermediate water maximum at 800 m and then decreases in the deepest waters; these concentrations are higher than observed at a station 350 miles to the northeast that shows similar vertical variations. It appears that there is a significant Mn gradient (throughout the water column) from HOT towards the northeast.Compared to the first valid oceanic Pb data for samples collected in 1976, Pb at ALOHA in 1997-1999 shows decreases in surface waters and waters shallower than 200 m. Pb concentrations in central North Pacific surface waters have decreased by a factor of 2 during the past 25 yr (from ∼65 to ∼30 pmol kg−1); surface water Pb concentrations in the central North Atlantic and central North Pacific are now comparable. We attribute the surface water Pb decrease to the elimination of leaded gasoline in Japan and to some extent by the U.S. and Canada. We attribute most of the remaining Pb in Pacific surface waters to Asian emissions, more likely due to high-temperature industrial activities such as coal burning rather than to leaded gasoline consumption. A 3-year mixed-layer time series from the nearby HALE-ALOHA mooring site (1997-1999) shows that there is an annual cycle in Pb with concentrations ∼20% higher in winter months; this rise may be created by downward mixing of the winter mixed layer into the steep gradient of higher Pb in the upper thermocline (Pb concentrations double between the surface and 200 m). From 200 m to the bottom, Pb concentrations decrease to levels of 5-9 pmol kg−1 near the bottom; for most of the water column, thermocline and deepwater Pb concentrations do not appear to have changed significantly during the 23-yr interval.  相似文献   

16.
17.
The laminated limestones of the Early Cretaceous Crato Formation of the Araripe Basin (North‐eastern Brazil) are world‐famous for their exceptionally well‐preserved and taxonomically diverse fossil fauna and flora. Whereas the fossil biota has received considerable attention, only a few studies have focused on the sedimentary characteristics and palaeoenvironmental conditions which prevailed during formation of the Crato Fossil Lagerstätte. The Nova Olinda Member represents the lowermost and thickest unit (up to 10 m) of the Crato Formation and is characterized by a pronounced rhythmically bedded, pale to dark lamination. To obtain information on palaeoenvironmental conditions, sample slabs derived from three local stratigraphic sections within the Araripe Basin were studied using high‐resolution multiproxy techniques including detailed logging, petrography, μ‐XRF scanning and stable isotope geochemistry. Integration of lithological and petrographic evidence indicates that the bulk of the Nova Olinda limestone formed via authigenic precipitation of calcite from within the upper water column, most probably induced and/or mediated by phytoplankton and picoplankton activity. A significant contribution from a benthonic, carbonate‐secreting microbial mat community is not supported by these results. Deposition took place under anoxic and, at least during certain episodes, hypersaline bottom water conditions, as evidenced by the virtually undisturbed lamination pattern, the absence of a benthonic fauna and by the occurrence of halite pseudomorphs. Input of allochthonous, catchment‐derived siliciclastics to the basin during times of laminite formation was strongly reduced. The δ18O values of authigenic carbonate precipitates (between ?7·1 and ?5·1‰) point to a 18O‐poor meteoric water source and support a continental freshwater setting for the Nova Olinda Member. The δ13C values, which are comparatively rich in 13C (between ?0·1 and +1·9‰), are interpreted to reflect reduced throughflow of water in a restricted basin, promoting equilibration with atmospheric CO2, probably in concert with stagnant conditions and low input of soil‐derived carbon. Integration of lithological and isotopic evidence indicates a shift from closed to semi‐closed conditions towards a more open lake system during the onset of laminite deposition in the Crato Formation.  相似文献   

18.
Petrographic studies undertaken on samples from outcrops of the Jurassic Pilliga Sandstone intake beds in the extreme southeastern portion of the Great Australian Basin reveal an abundance of low birefringent clay material filling pore spaces and detrital grain fractures. Thin-section petrography and scanning electron microscopy indicate that much of this material is authigenic and X-ray diffraction studies show it to be essentially monomineralic, consisting of well-ordered kaolinite. Although the Pilliga Sandstone is quartz-rich, micrometric analysis indicates that potassium feldspar is present in quantities up to 20% of the total detrital material. Sporadic biotite mica is also present, constituting up to 3% of the detrital volume.Mechanisms for the formation of authigenic kaolinite are discussed in terms of chemical equilibrium and detrital mineral stability in aqueous systems. Chemical data from bore water and surface waters from this stratigraphic unit indicate that kaolinite is the major stable mineral phase in contact with these natural waters and that minerals such as potassium feldspar or mica would chemically alter to kaolinite. Such alteration of detrital mineral grains is supported by thin-section petrography and this mechanism is considered to be the source for the majority of the authigenic kaolinite observed.The hydrogeological characteristics of the Pilliga Sandstone intake beds are related to the extent of development of authigenic kaolinite.  相似文献   

19.
Based on facies, structural, and general paleogeographic analyses, new models of the bottom topography and accumulation of the Tithonian–Early Berriasian Bazhenov Formation (West Siberian Basin) are proposed. According to these patterns, quite a low proportion of the terrigenous material in the high-carbon facies of the Bazhenov Formation can be explained by its accumulation in relatively deep troughs that frame the uplifted shallow-water central part of the West Siberian basin. In addition, the structure and dynamics of ocean currents are considered. During the Tithonian–Early Berriasian, these currents were related to the aeration stages of bottom waters enriched in hydrogen sulfide and carbon dioxide. As a result of the convection of the water mass suffocation periods occurred.  相似文献   

20.
Four seep sites located within an ∼20 km2 area offshore Georgia (Batumi seep area, Pechori Mound, Iberia Mound, and Colkheti Seep) show characteristic differences with respect to element concentrations, and oxygen, hydrogen, strontium, and chlorine isotope signatures in pore waters, as well as impregnation of sediments with petroleum and hydrocarbon potential. All seep sites have active gas seepage, near surface authigenic carbonates and gas hydrates. Cokheti Seep, Iberia Mound, and Pechori Mound are characterized by oil-stained sediments and gas seepage decoupled from deep fluid advection and bottom water intrusion induced by gas bubble release. Pechori Mound is further characterized by deep fluid advection of lower salinity pore fluids. The Pechori Mound pore fluids are altered by mineral/water reactions at elevated temperatures (between 60 and 110 °C) indicated by heavier oxygen and lighter chlorine isotope values, distinct Li and B enrichment, and K depletion. Strontium isotope ratios indicate that fluids originate from late Oligocene strata. This finding is supported by the occurrence of hydrocarbon impregnations within the sediments. Furthermore, light hydrocarbons and high molecular weight impregnates indicate a predominant thermogenic origin for the gas and oil at Pechori Mound, Iberia Mound, and Colkheti Seep. C15+ hydrocarbons at the oil seeps are allochtonous, whereas those at the Batumi seep area are autochthonous. The presence of oleanane, an angiosperm biomarker, suggests that the hydrocarbon source rocks belong to the Maikopian Formation. In summary, all investigated seep sites show a high hydrocarbon potential and hydrocarbons of Iberia Mound, Colkheti Seep, and Pechori Mound are predominantly of thermogenic origin. However, only at the latter seep site advection of deep pore fluids is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号