首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
Solid state 13C NMR techniques of cross polarization with magic-angle spinning, and interrupted decoupling have been employed to examine the nature of the organic matter in eight kerogen concentrates representing five Tertiary deposits in Queensland, Australia. The NMR results show that five of the kerogens have high proportions of aliphatic carbon in their organic matter and correspond to Type I–II algal kerogens. Three of the kerogens, derived from carbonaceous shales, have a high proportion of aromatic carbon in their organic matter and correspond to Type III kerogens. The fractions of aliphatic carbon in all the kerogens, regardless of type, are shown to correlate with the conversion characteristics of the corresponding raw shales during Fischer assay. Interrupted decoupling NMR results show the presence of more oxygen-substituted carbon in the carbonaceous shales, which may account for the greater CO2 evolution and phenolic materials found in the pyrolysis products of the carbonaceous shales.  相似文献   

2.
Six oil shales and their kerogen concentrates have been studied using 13C CP/MAS NMR techniques to study the distribution of organic carbon species. It is found that if the aromatic and aliphatic regions are divided at about 80 or 100 ppm, the apparent aromaticities of a raw shale and its kerogen concentrate are in good agreement. The presence of oxygen-substituted carbons in the raw shales and their depletion in the kerogen concentrates are observed and discussed.  相似文献   

3.
Six oil shales and their kerogen concentrates have been studied using 13C CP/MAS NMR techniques to study the distribution of organic carbon species. It is found that if the aromatic and aliphatic regions are divided at about 80 or 100 ppm, the apparent aromaticities of a raw shale and its kerogen concentrate are in good agreement. The presence of oxygen-substituted carbons in the raw shales and their depletion in the kerogen concentrates are observed and discussed.  相似文献   

4.
Cross plarization magic-angle spinning 13C NMR spectra have been obtained on oil shales representing a variety of geologic ages, origins, depositional environments, and source locations. The spectra show variations in the aliphatic and aromatic carbon distributions of the oil shales and reveal correlations between aliphatic carbon contents and potential shale oil yields. Hints of additional fine structure are present in the spectra of some samples, and examples are given of the spectral resolution that may be obtainable on other solid samples of geochemical interest.  相似文献   

5.
Electron paramagnetic resonance (EPR) reveals the presence of free radicals in raw shale, shale oil, and spent shale. Thirty-four samples of raw shale, and the spent shale and shale oil produced in the Fischer assay of these raw shale samples were studied. There is a significant correlation between the gallons per ton oil yield as estimated by Fischer assay and the spin density in the raw oil shale. However, the scatter in the data (due to uncertainties in sample preparation, Fischer assay results, and estimation of spins per gram of sample) limits the analytical utility of this finding. Sample preparation techniques affect the EPR signal.  相似文献   

6.
13C NMR spectroscopy was applied in the investigation of the structure of the organic matter in oil shales. By using Proton Enhanced Nuclear Induction Spectroscopy, a fair resolution of aliphatic and aromatic carbon signals was achieved. This method provided information on the relative ratio of aliphatic and aromatic carbons within a given set of samples (Aleksinac, Kimmeridge, Colorado, Australian torbanite and Estonian kukersite).  相似文献   

7.
Excellent hydrocarbon source rocks (oil shales), containing Type I organic matter (OM), were deposited in the continental Songliao rift basin during the Late Cretaceous. A major contribution of aquatic organisms (dinoflagellates, green algae, botryococcus) and minor input from macrophytes and land plants to OM accumulation is indicated by n-alkane distribution, steroid composition and δ13C values of individual biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria and chemoautotrophic bacteria, as well as purple and green sulfur bacteria. The presence of methanotrophic bacteria is indicated by 13C-depleted methyl hopane. The sediments were deposited in a eutrophic, alkaline palaeolake. Highly reducing (saline) bottom water conditions and a stratified water column existed during OM accumulation of the Qingshankou Formation and Member 1 of the Nenjiang Formation. This is indicated by low pristane/phytane, gammacerane index and MTTC ratios, and the presence of β-carotane and aryl isoprenoids. However, an abrupt change in environmental conditions during deposition of Member 2 of the Nenjiang Formation is indicated by significant changes in salinity and redox-sensitive biomarker ratios. A freshwater environment and suboxic conditions in the deep water prevailed during this period. Higher input of terrigenous OM occurred during deposition of the upper Nenjiang Formation.Good oil-to-source rock correlation was obtained using biomarker fingerprints of oil-stained sandstone from the Quantou Formation and oil shales from the Qingshankou Formation. Based on the extent of isomerisation of C31 hopanes, the oil was most probably derived from oil shales of the Qingshankou Formation in deeper parts of the basin.  相似文献   

8.
The paper presents data on the composition of biomarkers from bitumen extracts and the chemical structure of kerogen from Corg-rich sedimentary rocks before and after hydrothermal treatment in an autoclave at 300°C. Samples selected for this study are kukersite and Ordovician Dictyonema shale from the Baltics, Domanik oil shale from the Ukhta region, Upper Permian brown coal from the Pre-Ural foredeep, carbonaceous shale from the Oxfordian horizon of the Russian plate, and Upper Jurassic oil shales from the Sysola oil shale bearing region. The rocks contain type I, II, III, and II-S kerogens. The highest yield of extractable bitumen is achieved for Type II-S kerogen, whereas Type III kerogen produces the lowest amount of bitumen. The stages of organic matter thermal maturation achieved during the experiments correspond to a transition from PC2–3 to MC1–2. The 13C NMR data on kerogen indicate that the aromatic structures of geopolymers underwent significant changes.  相似文献   

9.
焉耆盆地侏罗纪煤系源岩显微组分组合与生油潜力   总被引:3,自引:1,他引:2  
焉耆盆地为我国西部含煤、含油气盆地, 侏罗系含煤地层是最重要的潜在源岩.对侏罗纪煤系中的暗色泥岩、碳质泥岩和煤层分别进行了有机岩石学、Rock-Eval热解分析和核磁共振分析.泥岩、碳质泥岩和煤层具有不同的有机岩石学和有机地球化学特征, 其中煤层具有3种有机显微组分组合类型, 不同显微组分组合类型的煤层具有不同的生油、生气潜力或倾油、倾气性.基质镜质体、角质体、孢子体等显微组分是煤中的主要生烃组分.侏罗系泥岩、碳质泥岩和煤层具有不同的生物标志物分布特征, 生物标志物组合分析表明焉耆盆地已发现原油是泥岩、碳质泥岩和煤层生成原油的混合产物.含煤地层的地球化学生烃潜力分析和已发现原油的油源对比均表明, 含煤地层不仅是重要的气源岩, 而且可成为有效的油源岩.   相似文献   

10.
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250–500°C).Degradation products of less altered kerogens are dominated by normal C4–C15 α,ω-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of α,ω-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed.As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens.Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (DENNIS et al., 1982).  相似文献   

11.
This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearasfalciferrum Zone. Therefore,the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ^13C values of the kerogen (δ^13Ckerogen) fluctuating from -26.22 to -23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ^13Ckerogen values. The biological assemblage,characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths.  相似文献   

12.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

13.
A new method has been devised, based on high resolution GLC component analyses of the C6-C7 hydrocarbons from shales and from crude oils, whereby composition parameters in an oil are compared with the corresponding parameters in a shale. Ideally, a given composition parameter should have the same value for a crude oil and the source rock which generated and expelled that crude oil. A Similarity Coefficient has been devised, to measure the degree of correlation between crude oil and source rock hydrocarbons or between the hydrocarbons from different groups of crude oils. The maximum value of the Similarity Coefficient is 1.00, and the theoretical minimum is a positive fraction close to zero. Based on the natural variation in composition of primary (not biodegraded) crude oils of the same basin and origin, it was found that if the Similarity Coefficient is about 0.80 or higher, correlation between the natural hydrocarbons considered is good. If the Similarity Coefficient is less than 0.73, correlation is poor.Based on strict rules for sample selection (e.g. maturity of shales and lack of biodegradation in the oils), ten presumed crude oil-source formation pairs were selected. Most of these pairs have high Similarity Coefficients of 0.80 or more. Erroneous crude oil-source rock combinations from areas with more than one source formation, as in West Texas, have low Similarity Coefficients. This indicates that the crude oil-source formation correlation method based on the Similarity Coefficient generally is functioning properly.  相似文献   

14.
High positive C isotopic ratios in many carbonates coincide with high organic carbon contents. Nahcolites in the Green River oil shales have carbon isotopic ratios up to +20%. Some samples of organic rich Monterey and Pismo Formation dolomites also are 13C-rich (δ13C to +14%.). Combining the observations of unusual isotopic ratios and organic richness has led to proposed mechanisms of formation of nahcolites and dolomites. Bacterial fermentation produces 13C-rich carbon dioxide which in the organic rich sediments is formed in large amounts. This leads to chemical reasons for the occurrence of dolomite rather than calcite and nahcolite rather than trona in some shallow burials.  相似文献   

15.
The determination of trace element concentrations in oil shale before mining and retorting is required for proper solid-waste management planning. Using routine Fischer assay oil yield data collected during resource characterization as indicators of potential trace element concentrations could lead to a standard method of identifying strata containing high trace element levels. In order to determine a correlation between trace element concentrations and oil yield, shale samples were selected from four statigraphic zones of the Parachute Creek Member of the Green River Formation for analysis. All samples were analyzed for total elemental concentrations, mineralogy, and Fischer assay oil yield. The results of these analyses demonstrated that the Mahogany zone shales contain significantly greater trace element concentrations (antimony, arsenic, cadmium, chromium, copper, lead, lithium, mercury, molybdenum, nickel, selenium, silver, and vanadium) than the other three shale zones. These high trace element concentrations have been identified within well-defined interbedded tuff deposits in the Mahogany zone. In addition, all trace elements evaluated, except boron, show either increasing or decreasing concentrations as oil yield increases within all oil shale zones. With an increased number of analyses of existing oil shale cores, oil yield data will be correlated to specific stratigraphic units containing high trace element concentrations.  相似文献   

16.
This study presents data on the composition of organic matter from the Late Silurian sediments of the Chernov uplift. These sediments are characterized by low Corg contents, which may reach 1–3% in individual layers. A relatively high thermal maturity of organic matter is confirmed by polycyclic biomarker distributions and Rock-Eval pyrolyisis data. Despite its higher thermal maturity level (T max = 456°C), kerogen in carbonaceous shales from the Padymeityvis River exhibits good preservation of long-chain n-alkyl structures, which are readily identified in the 13C NMR spectra and by the molecular analysis of the kerogen pyrolysis products.  相似文献   

17.
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated.Compared with the carbon isotopic composition of the source methane (δ13C1 = −39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff −δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed.The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous “semi-infinite” shale caprock over a period of 10 Ma.In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas.The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.  相似文献   

18.
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as “oil prone” and “gas prone” carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (∼30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ∼30 carbons, and of ∼20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters.  相似文献   

19.
Molecular geochemical methods have shown that it is often difficult to differentiate between coal- and interbedded shale-sourced oils, even though coals and interbedded shales may exhibit considerable organic influx variation (e.g. land plant vs algal organic matter) due to the changes of depositional setting. However, compound-specific stable carbon isotopic compositions are sensitive to the source input variations. Typically, specific molecules are more depleted in 13C with increasing content of aqueous biota. This hypothesis is examined and exemplified by comparing the stable carbon isotopic ratios of n-alkanes from source rock extracts and related oils of the Turpan basin, north-western China. Stable carbon isotopic values of n-alkanes extracted from coals and interbedded shales show that δ13C values of n-alkanes with less than 20 carbon atoms vary only slightly. However, there are dramatic changes in the isotopic compositions of higher molecular weight n-alkanes. Furthermore, n-alkanes from coal extracts are enriched in 13C relative to that of interbedded shales with excursions up to 2–3‰. This comparison enables the differentiation of coal- and interbedded shale-sourced oils, and provides information useful in assessing the hydrocarbon system of a basin.  相似文献   

20.
<正>The oil source of the Tarim Basin has been controversial over a long time.This study characterizes the crude oil and investigates the oil sources in the Lunnan region,Tarim Basin by adopting compound specific isotopes of n-alkanes and biomarkers approaches.Although the crude oil has a good correlation with the Middle-Upper Ordovician(O_(2+3)) source rocks and a poor correlation with the Cambrian-Lower Ordovician((?)-O_1) based on biomarkers,theδ~(13)C data of n-alkanes of the Lunnan oils show an intermediate value between(?)-O_1 and O_(2+3) genetic affinity oils,which suggests that the Lunnan oils are actually of an extensively mixed source.A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11%to 70%(averaging 36%),slightly less than that of the Tazhong uplift.It is suggested that the inconsistency between the biomarkers andδ~(13)C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources.The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible.To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号