首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
The Planck Satellite will survey the entire sky in 9 millimeter/submillimeter bands and detect thousands of galaxy clusters via their thermal Sunyaev‐Zel'dovich (SZ) effect. The unprecedented volume of the survey will permit the construction of a unique catalog of massive clusters out to redshifts of order unity. We describe the expected contents of this catalog and use an empirical model of the intra‐cluster gas to predict the X‐ray properties of Planck SZ clusters. Using this information we show how a ∼10 Ms follow‐up program on XMM‐Newton could increase by ∼100‐fold the number of clusters with measured temperatures in the redshift range z = 0.5–1. Such a large sample of well‐studied massive clusters at these redshifts would be a powerful cosmological tool and a significant legacy for XMM‐Newton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

3.
We discuss prospects for cluster detection via the Sunyaev–Zel'dovich (SZ) effect in a blank field survey with the interferometer array, the Arcminute MicroKelvin Imager (AMI). Clusters of galaxies selected in the SZ effect probe cosmology and structure formation with little observational bias, because the effect measures integrated gas pressure directly, and does so independently of cluster redshift.
We use hydrodynamical simulations in combination with the Press–Schechter expression to simulate SZ cluster sky maps. These are used with simulations of the observation process to gauge the expected SZ cluster counts. Even with a very conservative choice of parameters we find that AMI will discover at least several tens of clusters every year with     the numbers depend on factors such as the mean matter density, the density fluctuation power spectrum and cluster gas evolution. The AMI survey itself can distinguish between these to some degree, and parameter degeneracies are largely eliminated given optical and X-ray follow-up of these clusters; this will also permit direct investigation of cluster physics and what drives the evolution.  相似文献   

4.
We use the billion-particle Hubble Volume simulations to make statistical predictions for the distribution of galaxy clusters that will be observed by the Planck Surveyor satellite through their effect on the cosmic microwave background – the Sunyaev–Zel'dovich (SZ) effect. We utilize the lightcone data sets for both critical density ( τ CDM) and flat low-density (ΛCDM) cosmologies: a 'full-sky' survey out to z ∼0.5 , two 'octant' data sets out to beyond z =1 , and a 100 square degree data set extending to z ∼4 . Making simple, but robust, assumptions regarding both the thermodynamic state of the gas and the detection of objects against an unresolved background, we present the expected number of SZ sources as a function of redshift and angular size, and also as a function of flux (for both the thermal and kinetic effects) for three of the relevant High Frequency Instrument frequency channels. We confirm the expectation that the Planck Surveyor will detect around 5×104 clusters, though the exact number is sensitive to the choice of several parameters including the baryon fraction, and also to the cluster density profile, so that either cosmology may predict more clusters. We also find that the majority of detected sources should be at z <1.5 , and we estimate that around 1 per cent of clusters will be spatially resolved by the Planck Surveyor , though this has a large uncertainty.  相似文献   

5.
The present generation of weak lensing surveys will be superseded by surveys run from space with much better sky coverage and high level of signal-to-noise ratio, such as the Supernova/Acceleration Probe ( SNAP ). However, removal of any systematics or noise will remain a major cause of concern for any weak lensing survey. One of the best ways of spotting any undetected source of systematic noise is to compare surveys that probe the same part of the sky. In this paper we study various measures that are useful in cross-correlating weak lensing surveys with diverse survey strategies. Using two different statistics – the shear components and the aperture mass – we construct a class of estimators which encode such cross-correlations. These techniques will also be useful in studies where the entire source population from a specific survey can be divided into various redshift bins to study cross-correlations among them. We perform a detailed study of the angular size dependence and redshift dependence of these observables and of their sensitivity to the background cosmology. We find that one-point and two-point statistics provide complementary tools which allow one to constrain cosmological parameters and to obtain a simple estimate of the noise of the survey.  相似文献   

6.
The redshift evolution of the galaxy cluster temperature function is a powerful probe of cosmology. However, its determination requires the measurement of redshifts for all clusters in a catalogue, which is likely to prove challenging for large catalogues expected from XMM-Newton , which may contain of the order of 2000 clusters with measurable temperatures, distributed around the sky. In this paper we study the apparent cluster temperature, which can be obtained without cluster redshifts. We show that the apparent temperature function itself is of limited use in constraining cosmology, and so concentrate our focus on studying how apparent temperatures can be combined with other X-ray information to constrain the cluster redshift. We also briefly study the circumstances under which the non-thermal spectral features can provide redshift information.  相似文献   

7.
Measurements of clustering in large-scale imaging surveys that make use of photometric redshifts depend on the uncertainties in the redshift determination. We have used light-cone simulations to show how the deprojection method successfully recovers the real-space correlation function when applied to mock photometric redshift surveys. We study how the errors in the redshift determination affect the quality of the recovered two-point correlation function. Considering the expected errors associated with the planned photometric redshift surveys, we conclude that this method provides information on the clustering of matter useful for the estimation of cosmological parameters that depend on the large-scale distribution of galaxies.  相似文献   

8.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

9.
We present the Mock Map Facility, a powerful tool for converting theoretical outputs of hierarchical galaxy formation models into catalogues of virtual observations. The general principle is straightforward: mock observing cones can be generated using semi-analytically post-processed snapshots of cosmological N -body simulations. These cones can then be projected to synthesize mock sky images. To this end, the paper describes in detail an efficient technique for creating such mock cones and images from the galaxies in cosmological simulations ( galics ) semi-analytic model, providing the reader with an accurate quantification of the artefacts it introduces at every step. We show that replication effects introduce a negative bias on the clustering signal – typically peaking at less than 10 per cent around the correlation length. We also thoroughly discuss how the clustering signal is affected by finite-volume effects, and show that it vanishes at scales larger than approximately one-tenth of the simulation box size. For the purpose of analysing our method, we show that number counts and redshift distributions obtained with galics / momaf compare well with K -band observations and the two-degree field galaxy redshift survey. Given finite-volume effects, we also show that the model can reproduce the automatic plate measuring machine angular correlation function. The momaf results discussed here are made publicly available to the astronomical community through a public data base. Moreover, a user-friendly Web interface ( http://galics.iap.fr ) allows any user to recover her/his own favourite galaxy samples through simple SQL queries. The flexibility of this tool should permit a variety of uses ranging from extensive comparisons between real observations and those predicted by hierarchical models of galaxy formation, to the preparation of observing strategies for deep surveys and tests of data processing pipelines.  相似文献   

10.
The Planck mission is the most sensitive all-sky cosmic microwave background (CMB) experiment currently planned. The High-Frequency Instrument (HFI) will be especially suited for observing clusters of galaxies by their thermal Sunyaev–Zel'dovich (SZ) effect. In order to assess Planck 's SZ capabilities in the presence of spurious signals, a simulation is presented that combines maps of the thermal and kinetic SZ effects with a realization of the CMB, in addition to Galactic foregrounds (synchrotron emission, free–free emission, thermal emission from dust, CO-line radiation) as well as the submillimetric emission from celestial bodies of our Solar system. Additionally, observational issues such as the finite angular resolution and spatially non-uniform instrumental noise of Planck 's sky maps are taken into account, yielding a set of all-sky flux maps, the autocorrelation and cross-correlation properties of which are examined in detail. In the second part of the paper, filtering schemes based on scale-adaptive and matched filtering are extended to spherical data sets, that enable the amplification of the weak SZ signal in the presence of all contaminations stated above. The theory of scale-adaptive and matched filtering in the framework of spherical maps is developed, the resulting filter kernel shapes are discussed and their functionality is verified.  相似文献   

11.
One of the most direct routes for investigating the geometry of the Universe is provided by the numbers of strongly magnified gravitationally lensed galaxies as compared with those that are either weakly magnified or de-magnified. In the submillimetre waveband the relative abundance of strongly lensed galaxies is expected to be larger as compared with the optical or radio wavebands, both in the field and in clusters of galaxies. The predicted numbers depend on the properties of the population of faint galaxies in the submillimetre waveband, which was formerly very uncertain; however, recent observations of lensing clusters have reduced this uncertainty significantly and confirm that a large sample of galaxy–galaxy lenses could be detected and investigated using forthcoming facilities, including the FIRST and Planck Surveyor space missions and a large ground-based millimetre/submillimetre-wave interferometer array (MIA). We discuss how this sample could be used to impose limits on the values of cosmological parameters and the total density and form of evolution of the mass distribution of bound structures, even in the absence of detailed lens modelling for individual members of the sample. The effects of different world models on the form of the magnification bias expected in sensitive submillimetre-wave observations of clusters are also discussed, because an MIA could resolve and investigate images in clusters in detail.  相似文献   

12.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

13.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

14.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

15.
Planck will be the first mission to map the entire cosmic microwave background (CMB) sky with mJy sensitivity and resolution better than 10′. The science enabled by such a mission spans many areas of astrophysics and cosmology. In particular it will lead to a revolution in our understanding of primary and secondary CMB anisotropies, the constraints on many key cosmological parameters will be improved by almost an order of magnitude (to sub-percent levels) and the shape and amplitude of the mass power spectrum at high redshift will be tightly constrained.  相似文献   

16.
With detections of the Sunyaev–Zel'dovich (SZ) effect induced by galaxy clusters becoming routine, it is crucial to establish accurate theoretical predictions. We use a hydrodynamical N -body code to generate simulated maps, of size 1 deg2, of the thermal SZ effect. This is done for three different cosmologies: the currently favoured low-density model with a cosmological constant, a critical-density model and a low-density open model. We stack simulation boxes corresponding to different redshifts in order to include contributions to the Compton y -parameter out to the highest necessary redshifts. Our main results are as follows.
(i) The mean y -distortion is around 4×10−6 for low-density cosmologies, and 1×10−6 for critical density. These are below current limits, but not by a wide margin in the former case.
(ii) In low-density cosmologies, the mean y -distortion is contributed across a broad range of redshifts, with the bulk coming from z ≲2 and a tail out to z ∼5. For critical-density models, most of the contribution comes from z <1.
(iii) The number of SZ sources above a given y depends strongly on instrument resolution. For a 1-arcmin beam, there are around 0.1 sources per deg2 with y >10−5 in a critical-density Universe, and around 8 such sources per deg2 in low-density models. Low-density models with and without a cosmological constant give very similar results.
(iv) We estimate that the Planck satellite will be able to see of order 25 000 SZ sources if the Universe has a low density, or around 10 000 if it has critical density.  相似文献   

17.
In this work we study the performance of linear multifilters for the estimation of the amplitudes of the thermal and kinematic Sunyaev–Zel'dovich (SZ) effects. We show that when both effects are present, estimation of these effects with standard matched multifilters is intrinsically biased. This bias is due to the fact that both signals have basically the same spatial profile. We find a new family of multifilters related to the matched multifilters that cancel this systematic bias, hence we call them unbiased matched multifilters. We test the unbiased matched multifilters and compare them with the standard matched multifilters using simulations that reproduce the future Planck mission observations. We find that in the case of the standard matched multifilters the systematic bias in the estimation of the kinematic Sunyaev–Zel'dovich effect can be very large, even greater than the statistical error bars. Unbiased matched multifilters cancel this kind of bias effectively. In concordance with other works in the literature, our results indicate that the sensitivity and resolution of Planck will not be enough to give reliable estimations of the kinematic Sunyaev–Zel'dovich effects of individual clusters. However, as the estimation with the unbiased matched multifilters is not intrinsically biased, it can be possible to use them to study statistically any peculiar cosmological bulk flows via the kinematic SZ effect.  相似文献   

18.
We use the PSC z IRAS galaxy redshift survey to analyse the cosmological galaxy dipole out to a distance of 300  h 1 Mpc. The masked area is filled in three different ways, first by sampling the whole sky at random, secondly by using neighbouring areas to fill a masked region, and thirdly using a spherical harmonic analysis. The method of treatment of the mask is found to have a significant effect on the final calculated dipole.
The conversion from redshift space to real space is accomplished by using an analytical model of the cluster and void distribution, based on 88 nearby groups, 854 clusters and 163 voids, with some of the clusters and all of the voids found from the PSC z data base.
The dipole for the whole PSC z sample appears to have converged within a distance of 200  h 1 Mpc and yields a value for , consistent with earlier determinations from IRAS samples by a variety of methods. For b =1, the 2 range for 0 is 0.431.02.
The direction of the dipole is within 13° of the cosmic microwave background (CMB) dipole, the main uncertainty in direction being associated with the masked area behind the Galactic plane. The improbability of further major contributions to the dipole amplitude coming from volumes larger than those surveyed here means that the question of the origin of the CMB dipole is essentially resolved.  相似文献   

19.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

20.
We present the spectra, positions, and finding charts for 31 bright ( R <19.3) colour-selected quasars covering the redshift range z =3.85–4.78, with four having redshifts z >4.5. The majority are in the southern sky ( δ <−25°). The quasar candidates were selected for their red ( B J− R ≳2.5) colours from UK or POSSII Schmidt Plates scanned at the Automated Plate Measuring (APM) facility in Cambridge. Low-resolution (≳ 10 Å) spectra were obtained to identify the quasars, primarily at the Las Campanas Observatory. The highest redshift quasar in our survey is at z ≈4.8 ( R =18.7) and its spectrum shows a damped Ly α absorption system at z =4.46. This is currently the highest redshift damped Ly α absorber detected. Five of these quasars exhibit intrinsic broad absorption line features. Combined with the previously published results from the first part of the APM United Kingdom Schmidt Telescope (UKST) survey we have now surveyed a total of ∼8000 deg2 of sky i.e. 40 per cent of the high galactic latitude (| b |>30°) sky, resulting in 59 optically selected quasars in the redshift range 3.85 to 4.78; 49 of which have z ≥4.00.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号