首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
广泛存在于上层海洋的次中尺度过程能有效地从平衡态的中尺度地转剪切中汲取动能, 并通过非地转斜压不稳定正向串级能量至小尺度的耗散过程, 从而对海洋物质能量输运、中尺度过程变异以及混合层再层化等产生重要影响。文章利用高分辨率(500m)的区域海洋数值模式ROMS(Regional Ocean Modeling System)模拟结果, 并结合理论分析, 对南海北部冬季典型反气旋涡的次中尺度动力过程进行了初步探讨。研究结果表明, 典型中尺度涡边缘存在显著的锋面, 锋面海域强烈的水平浮力梯度能有效地减小Ertel位涡, 有利于诱发次中尺度对称不稳定(symmetric instability); 锋生作用是引起该中尺度涡边缘发生对称不稳定的主要动力机制之一。同时, 次中尺度过程及其不稳定引起的垂向次级环流显著增强了混合层垂向物质能量交换, 最大垂向速度可达95m·d-1, 影响深度最深至80m。  相似文献   

2.
During November 2000–June 2002, both direct current measurements from deployment of a line of five moorings and repeated CTD observations were conducted along the Oyashio Intensive observation line off Cape Erimo (OICE). All the moorings were installed above the inshore-side slope of the Kuril-Kamchatka Trench. Before calculating the absolute volume transports, we compared vertical velocity differences of relative geostrophic velocities with those of the measured velocities. Since both the vertical velocity differences concerned with the middle three moorings were in good agreement, the flows above the continental slope are considered to be in thermal wind balance. We therefore used the current meter data of these three moorings, selected among all five moorings, to estimate the absolute volume transports of the Oyashio referred to the current meter data. As a result, we estimated that the southwestward absolute volume transports in 0–1000 db are 0.5–12.8 × 106 m3/sec and the largest transport is obtained in winter, January 2001. The Oyashio absolute transports in January 2001, crossing the OICE between 42°N and 41°15′ N from the surface to near the bottom above the continental slope, is estimated to be at least 31 × 106 m3/sec. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Using a combined model that couples a three-dimensional ocean circulation model, a model for tidal currents, and a model for particle transport, the structure of the velocity field of the tidal current and the transport of particles migrating over the vertical were studied in the zone of the influence of the riverine runoff in the eastern part of the English Channel. It was found that the interaction between the tidal current and the baroclinic flow formed by the riverine runoff off the northeastern coast of France generates a steady-state intensive (~0.3 m/s) residual current in the zone of the effect of the riverine runoff. In order to assess the influence of different types of particle migration (which simulate ichthyoplankton) on the processes of their transport in the region under consideration, we performed numerical experiments with particle clusters, for which parameterization of their migration was implemented on the basis of the field observations over the proper vertical movements of different types of ichthyoplankton. The experiments showed that the distribution of the fields of the particle concentrations and the velocities of their movements depend not only on the background hydrophysical conditions but also on the character of the vertical migration of the particles. In this paper, a comparison between the results of the modeling and those of the field observations in the region under consideration are presented.  相似文献   

4.
海洋锋面存在于特征明显不同的2种或多种水系或水团交界处,锋面区域形成的次生环流和辐聚作用可显著影响到海洋中的物质输运与生物生产,故受到海洋学家的广泛关注。研究发现,我国近海陆架存在14个永久性的准静止锋面(渤海海峡锋面、山东半岛沿岸锋面、苏北沿岸锋面、西韩湾锋面、京畿湾锋面、济州岛西锋面、长江环形浅滩锋面、闽浙沿岸锋面、黑潮锋面、台湾沿岸锋面、闽粤沿岸锋面、珠江口沿岸锋面、琼东锋面和北部湾锋面),且部分海域观测到双锋面、穿刺锋面和锋面波等现象。它们与陆架环流及其他动力过程(如:涡旋、内波等)共同控制着我国边缘海的物质能量输运与交换以及生物生产力格局。近岸物质沿锋面、跨锋面输运与锋区的垂向输送过程对我国边缘海生物地球化学循环和生态过程存在显著季节性影响。冬季到春季,沿岸锋面松弛能够加强物质从近岸向陆架的输运,进而在空间上调制春季藻华暴发的时间与量级;夏季到秋季,我国边缘海存在显著的潮汐锋面系统,锋面的辐聚效应以及次级环流可显著提高锋面区域的营养盐浓度和改善光照水平,对浮游植物的生长聚集起到促进作用,故在富营养化的河口与沿岸海域,锋面区域容易成为赤潮或缺氧高发区。此外,锋面的物理屏障作用使得两侧水团保持相对独立的物理与化学特征,因而在我国边缘海生境区划和生物多样性梯度变化等方面扮演重要角色,这些研究对认识我国边缘海物质循环与生物生产的控制机制具有重要作用。未来仍需充分结合观测与卫星资料,运用多过程耦合的高分辨率模型,深入认识锋面的精细结构与动态变化,加强亚中尺度和小尺度过程及其生态效应的研究。  相似文献   

5.
The circulation and transport of Antarctic Bottom Water (σ4<45.87) in the region of the Vema Channel are studied along three WOCE hydrographic lines, the geostrophic velocities referenced to previously published direct current measurements. The primary supply of water to the deep Vema Channel is from the Argentine Basin's deep western boundary current, with no indication of an inflow from the southeast. In the northern Argentine Basin, detachment of lower North Atlantic Deep Water from the continental slope is associated with a deep thermohaline front near 34°S. To the north of this front, the upper part of the AABW bound for the Vema Channel (σ4<46.01) exhibits a significant NADW influence. Further modification of the throughflow water occurs near 30°30′S, where the channel orientation changes by ∼50°. Southward flow of bottom water on the eastern flank of the Vema Channel, amounting to ∼1.5 Sv, represents a significant countercurrent to the deep channel transport. Inclusion of this countercurrent reduces the net flow of AABW through the Vema Channel from 3.2±0.7 to 1.7±1.1 Sv. Water properties imply that the near-zero net flow over the Santos Plateau results from a near-closed cyclonic circulation fed by the deep Vema Channel throughflow. A disruption of the northward boundary current in the upper AABW (lower circumpolar water) is required by this flow pattern. The extension of the cyclonic circulation on the Santos Plateau enters the Brazil Basin as a ∼1 Sv flow distinct from the outflow in the Vema Channel Extension (6.2 Sv). The high magnitude of the latter suggests a southward recirculation of bottom water near the western boundary to the north of the region of study.  相似文献   

6.
Coastal upwelling in the California Current system has been the subject of large scale studies off California and Baja California, and of small scale studies off Oregon. Recent studies of the winds along the entire coast from 25°N to 50°N indicate that there are significant along-shore variations in the strength of coastal upwelling, which are reflected in the observed temperature distribution. Active upwelling appears to be restricted to a narrow coastal band (about 10–25 km wide) along the entire coast, but the region influenced by coastal upwelling may be much wider. Intensive observations of the upwelling zone during summer off Oregon show the presence of a southward coastal jet at the surface, a mean vertical shear, a poleward undercurrent along the bottom, and persistently sloping isopycnals over the continental shelf; most of the upwelling there occurs during relatively short periods (several days long) of upwelling-favorable winds. During the upwelling season off Oregon, the offshore Ekman transport is carried by the surface Ekman layer, and the onshore return flow occurs through a quasi-geostrophic interior. It is not known whether the structure and dynamics observed off Oregon are typical of the upwelling zone along the entire coast, though some of the same features have been observed off Baja California. Current and future research will eventually show whether the Oregon results are also applicable in the region of persistently strong upwelling-favorable winds off northern California, and in the region of complex bathymetry off central and southern California.  相似文献   

7.
The goal of this paper is to study the flows of Antarctic Bottom Water through the fracture zones in the northern part of the Mid-Atlantic Ridge based on the Conductivity-Temperature-Depth and Lowered Acoustic Doppler Current Profiler observations in 2014, 2015, and 2016. We measured the thermohaline properties and velocities and analyzed the flows of bottom water in the Strakhov, Bogdanov, nameless (07°28′N), Vernadsky, Doldrums, Arkhangelsky, Ten Degree, Vema, Marathon, Fifteen Twenty, and Kane fracture zones. These abyssal channels connect the deep basins of the East and West Atlantic. In addition to the known fact that the main portion of water propagates through the Vema Fracture Zone (11°N), we estimated that additionally a half of this volume propagates through the other fractures. Nevertheless, the pathway for the coldest water is located in the Vema Fracture Zone. Velocities of bottom currents in this fracture reach 45 cm/s. We found strong difference in the structure and transport through the Vema Fracture Zone based on four sections across the fracture occupied in 3 years from 2014 to 2016. The transport varies from 0.7 to 1.2 Sv. The core of maximum velocity in the main channel of this fracture changes its depth between 4000 m and the bottom at 4650 m. The total transport through the other fracture zones is as high as 0.48 ± 0.05 Sv.  相似文献   

8.
A numerical experiment has been carried out using a hydrodynamical model with nonlinear equations of motion and heat and salt advection to reconstruct the fields of hydrophysical parameters taking into account the real atmospheric forcing for the autumn season along the southern coast of the Crimean Peninsula. The studied part of the coast is situated at 44.25°N 33.95°E/44.72°N 34.55°E. High spatial resolution is used for modeling: 350 m in the horizontal plane with 38 layers in the vertical; the bottom topography is described in detail with ~500 m resolution. Detected and studied meso- and sub-mesoscale structures in the current field agree well with the observational data, which is impossible or hard to identify in numerical experiments with coarser resolution. Their kinematic characteristics and the lifetime are defined and some mechanisms of their origin are suggested.  相似文献   

9.
Baroclinic variations of the southward flow in the interior region of the North Pacific subtropical gyre are presented with five hydrographic sections from San Francisco to near Japan during 2004–2006. The volume transport averaged temperature of the interior flow, which varies vigorously by a maximum of 0.8°C, is negatively correlated with the transport in the layer of density 24.5–26.5σ θ, associated with changes in the vertical current structure. Transport variation in this density layer is thus mainly responsible for the thermal impact of the interior flow on the heat transport of the subtropical gyre.  相似文献   

10.
Temporal variations of the net Kuroshio transport are investigated using long-term hydrographic data from repeat section of the 137°E meridian from the south of Japan (34°N) to New Guinea (1°S) conducted by the Japan Meteorological Agency. In this study, boundaries of the Kuroshio and the Kuroshio Counter Current (KCC) are defined based on the sea surface dynamic height distribution. Westward flows associated with the KCC and cold-core eddy north of the Kuroshio are removed from the eastward flow associated with the Kuroshio in order to estimate the net Kuroshio transport strictly. The net Kuroshio transport reveals low-frequency variations: significant signals on a decadal (about 10-year) timescale. The variations of net Kuroshio transport are predominantly caused by changes in the magnitude of oceanic current speed fields associated with a vertical movement of the main pycnocline depth around the southern boundary of the Kuroshio: deepening of the main pycnocline around the southern boundary of the Kuroshio forms a sharp northern upward-tilting slope of the isopycnal surfaces at the Kuroshio region, and eventually the net Kuroshio transport increases together with the Kuroshio eastward transport. By using a wind-driven hindcast model, it is found that the main pycnocline depth variation results from the first-mode baroclinic Rossby waves attributable to two types of Aleutian Low (AL) changes: a change in the magnitude of AL and meridional movement of AL.  相似文献   

11.
We report, from remote sensing and in situ observations, a new type of permanent structure in the eastern subtropical Atlantic Ocean, that we call the “Canary Eddy Corridor”. The phenomenon, is a zonal long-lived (>3 months) mesoscale eddy corridor, whose source is the flow perturbation of the Canary Current and the Trade Winds at the Canary Islands. The latitudinal range of the corridor spans 22°N–29°N and extends from the Canaries to at least 32ºW, near the mid-Atlantic. This is the main region of long-lived westward-propagating eddies in the subtropical northeast Atlantic. From a age-distribution study we observe that at least 10% of mesoscale eddies in this region are long-lived, with a dominance of anticyclones over cyclones. Another four westward-propagating eddy corridors were also detected: two small corridors north and south of the Azores Front; a small zonal corridor located near 31ºN, south of the island of Madeira; and a small corridor located near the Cape Blanc giant filament. The existence of these corridors may change, at least for the northeastern subtropical Atlantic, the general idea that mesoscale eddies are disorganized, ubiquitous structures in the ocean. The Canary Eddy Corridor constitutes a direct zonal pathway that conveys water mass- and biogeochemical properties offshore from the Canary Island/Northwest Africa upwelling system, and may be seen as a recurrent offshore pump of organic matter and carbon to the oligotrophic ocean interior. Estimates of volume and mass transport indicate that Canary Eddy Corridor westward transport is more than one-fourth of the southward transport of the Canary Current. The westward transport of kinetic energy by the eddies of the Canary Corridor is as important as the southward transport by the Canary Current. The total primary production related to the Corridor may be as high as the total primary production of the northwest Africa upwelling system for the same latitude range.  相似文献   

12.
We conducted 1-year-long mooring observations four times below 2000?m, slightly south of the equator (2°39?? to 4°35??S) at 162°E in the Melanesian Basin in order to detect the southward deep western boundary return current crossing the equator. Contrary to our initial expectation of the deep flow scheme in the equatorial western boundary region, the observed results indicated a fairly complicated flow configuration. We analyzed the results with the help of a high-resolution model simulation. The ensemble average of the horizontal flow at each level near the deep western boundary indicates a significant westward flow at 2000 and 2250?m, with an insignificant southward component at 2500 and 2750?m. The annual mean meridional transports are very small (>1?Sv) and insignificant, with an ensemble-averaged value of 0.3?Sv (southward) ±0.4?Sv at most. Combining this with high-resolution model results, it is deduced that the southward transport of the deep western boundary current (DWBC) leaving the equator may be smaller than those obtained by low-resolution models, because of trapping of its fairly large fraction in the equatorial zone. Annual-scale flow patterns are classified into several categories, mainly based on the meridional-flow dominating or the zonal-flow dominating pattern. A case of the meridional-flow dominating patterns may possibly capture an annual-scale variability of DWBC, because its meridional transport variation, though somewhat weak, is consistent with that simulated. The zonal-flow dominating regime includes two types: long-lasting, almost steady westward flows and long-term zonal flow oscillations. The former seems to comprise well-known zonally elongated and meridionally narrow structures of the zonal flow beneath the thermocline in the equatorial region. The ensemble-averaged flow mentioned above is dominated by this type at the upper two levels 2000 and 2250?m, with total westward transport of 1.6?±?0.7?Sv. The latter type seems to be a manifestation of the vertically propagating equatorial annual Rossby waves.  相似文献   

13.
The upper ocean large-scale circulation of the western tropical Atlantic from 11.5°S to the Caribbean in November and December 2000 is investigated from a new type of shipboard ADCP able to measure accurate velocities to 600 m depth, combined with lowered ADCP measurements. Satellite data and numerical model output complement the shipboard measurements to better describe the large-scale circulation. In November 2000 the North Brazil Undercurrent (NBUC) was strongly intensified between 11 and 5°S by inflow from the east, hence the NBUC was formed further to the north than in the mean. The NBUC was transporting 23.1 Sv northward at 5°S, slightly less than the mean of six cruises (Geophysical Research Letters (2002) 29 (7) 1840). At 35°W the North Brazil Current (NBC) transported 29.4 Sv westward, less than the mean of 13 cruises (Geophysical Research Letters (2003) 30 (7) 1349). A strong retroflection ring had just pinched off the NBC retroflection according to the satellite information. The inflow into the Caribbean south of 16.5°N originated in part of a leakage from the NBC retroflection zone and in part from the North Equatorial Current. A thermocline intensified ring with a transport of about 30 Sv was located off Guadeloupe carrying South Atlantic Central Water towards the north. Observed deviations of the November/December 2000 flow field from the November long-term mean flow field were related to an enhanced Intertropical Convergence Zone (ITCZ) associated with an increased North Equatorial Countercurrent (NECC), as well as to boundary current rings and Rossby waves with zonal wavelength of the order of 1000 km. At 44°W the presence of a Rossby wave associated with an anticyclonic circulation led to a strongly enhanced NBC of 65.0 Sv as well as to a combined NECC and Equatorial Undercurrent transport of 52.4 Sv, much stronger than during earlier cruises. While the 1/3°-FLAME model is unable to reproduce details of the vertical distribution of the observed horizontal flow at 44 °W for November 2000 as well as the horizontal distribution of some of the observed permanent current bands, a climatological simulation with the 1/12°-FLAME agrees much better with the observations and provides information on the spreading path between the sections. E.g., the interpretation that the widening in the Antarctic Intermediate Water layer of the westward flowing NBC at 44°W in November was caused by water from the Equatorial Intermediate Current was further supported by the model results.  相似文献   

14.
A unique phytoplankton bloom appears every year during the austral spring/summer in the northern Kerguelen Plateau region. The Kerguelen Ocean and Plateau compared Study (KEOPS) showed that an increase in subsurface iron coming up from the seafloor through vertical mixing was responsible for the observed increase in chlorophyll-a above the plateau. We demonstrate that the bloom pattern is not a simple increase of biomass over shallow water: it is strongly influenced by the bathymetry and its spatial extent controlled by strong currents around the plateau. Here we focus on lateral mixing process to explain the particular shape of the bloom. We use the Smagorinsky [1963. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (3), 99–164] formula to estimate and map fields of lateral mixing time scales (τ) due to barotropic tidal currents, barotropic atmospheric forced currents, Ekman velocities and geostrophic velocities. Results show that short time scale mixing is strongly influenced by the tides while the other processes have minor influences. Comparisons of τ and satellite chlorophyll-a images show that the spatial pattern of the bloom seems to be delimited by a barrier of high lateral mixing that is essentially due to tides. This emphasises the role played by the tides over the Kerguelen Plateau in supplying iron to the phytoplankton and containing the horizontal shape of the bloom. This is one of the first times such a link has been demonstrated, which has implications for the study of iron advection in the ocean.  相似文献   

15.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

16.
The properties of the Antarctic Bottom Water flow in the region of its inflow to the channel of the Romanche Fracture Zone at 22°10′–22°30′ W are studied on the basis of CTD and LADCP profiling in the western part of the equatorial fracture zone. A deep water cataract was found at the sill over the southern wall of the fracture with a depth of approximately 4600 m, which is associated with the abyssal flow, whose potential temperature is lower than 1°C. The inflow of water into the channel of the fracture in this temperature range is fully localized over this sill. The minimum potential temperature θ recorded in 2011 near the bottom was equal to 0.51°C, which is lower approximately by 0.12°C than the minimum temperatures ever measured in the western part of the fracture. The water transport in the cataract was estimated at 0.2 Sv (1 Sv = 106 m3/s), which is approximately 30% of the known estimates of the total transport of Antarctic Bottom Water (θ < 1.9°C) through the fracture. The extremely high intensity of the cross isothermal mixing in the cataract region was found. The analysis of the bottom topography data, including the historical WOD09 dataset, shows that the inflow of water with 1.00° < θ < 1.70°C into the channel of the fracture is most likely fully localized in a few passages in the region of the survey in 2011, while the water exchange with the abyssal waters with θ > 1.70°C through the Romanche Fracture Zone between the West and East Atlantic can also occur through the depressions in the southern and northern walls of the fracture in the region of the Vema Deep.  相似文献   

17.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   

18.
Based on empirical monthly data on the parameters of oscillations in the horizontal wind component of the diurnal migrating tide, we calculated the altitude-latitude distributions of the parameters of oscillations in the vertical wind component of the diurnal tide in the region of the mesosphere and lower thermosphere (80–100 km). The initial data were obtained from satellite observations of the mesosphere and lower thermosphere at altitudes from 90 to 120 km and from data of ground-based sounding of this region using the radio meteor method and the method of partial reflections in the altitude range from 80 to 100 km. We compare the resulting distributions with the results of numerical modeling for the migrating diurnal tide using a global circulation model for the middle and upper atmosphere. It is shown that, accurate to measurement errors, there is a good agreement between the distributions of parameters of the migrating diurnal tide obtained by the models. One specific feature of the empirical distributions of the amplitude of the vertical wind oscillations is that there are three regions of increased amplitude values—in the vicinity of the equator and at 30° N and 30° S latitudes—which were observed for all seasons. The maximum value of the amplitude of the vertical wind oscillations is approximately 0.1 m/s. The divergence of the Eliassen-Palm flux was estimated to be on the order of 10 m s−1 day−1.  相似文献   

19.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

20.
Mesoscale physical and biological processes are examined at the Gulf Stream front by means of a 4-D simulation including physical and biological data assimilation. The data assimilated are from Leg 1 of the Fall BIOSYNOP cruise, 21 Sept.–8 Oct. 1988, and GULFCAST data for the same period. Focus is on the vertical velocities at the front, the vertical and horizontal transports of nutrients and plankton, and the impact of these transports on phytoplankton biomass, production and organic particle export. It was found that while jet meandering enhances new production at the front, primary production and phytoplankton concentration at the front are not significantly enhanced over those of Slope water. Winds during this period also have little impact on productivity at the front, due to their high temporal variability. Ring–stream interactions, however, significantly increase the net vertical and meridional transports of nutrients and plankton and can lead to phytoplankton patchiness at the front. This emphasizes the importance of submesoscale events between interacting mesoscale physical features in the transport of nutrients and plankton, and in explaining the observations. The enhanced phytoplankton concentrations observed during BIOSYNOP are found to be primarily due to advection (convergence) rather than in situ biological growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号