首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
《International Geology Review》2012,54(14):1769-1782
The early Palaeozoic tectonic evolution of South Mongolia is not well constrained due to the limited exposure of early Palaeozoic rocks in the area and the scarcity of both geochemical and geochronological data. In order to help rectify this situation, we have conducted detailed studies on the Biluutiin ovoo ophiolite in South Mongolia to provide constraints on the tectonic evolution of the region during this period. The Biluutiin ovoo ophiolite consists of ultramafic rocks, mylonitic gabbro, basalt, tuff sandstone, plagiogranite, calcite, and chert. Gabbro and plagiogranite samples from the ophiolitic complex yielded SHRIMP zircon ages of 525 ± 5 Ma and 503 ± 6 Ma, respectively. Biluutiin ovoo ophiolitic basalts display LREE and LILE enrichment and strong HFSE depletion, indicating that the ophiolite is supra-subduction zone (SSZ) type. Plagiogranite with adakite-like geochemical compositions suggests that palaeo-ocean subduction occurred in South Mongolia during Cambrian time. Intruding granite yielded a SHRIMP zircon age of 353 ± 2 Ma, indicating that the ophiolite was emplaced before early Carboniferous time. Identification of the Cambrian ophiolitic complex and the occurrence of Cambrian adakites indicate that southern Mongolia underwent a period of active volcanism during the Cambrian. The Cambrian formations are likely correlated to the early Palaeozoic subduction-accretion belt of Western Mongolia.  相似文献   

2.
《Gondwana Research》2014,25(2):842-858
The northern margin of the Alxa block (NMAB), located in the southernmost part of the Altaids, is important for understanding the tectonic processes associated with the closure of the Paleo-Asian ocean. In this study, we report results from our studies on two ophiolitic belts (the Enger Us and Quagan Qulu ophiolitic belts) to constrain the tectonic evolution of the Altaids. The tectonic blocks in the Enger Us ophiolite are mainly composed of ultramafic and mafic rocks, with a matrix comprising highly deformed Carboniferous clastic rocks and tuffs. Zircons from a pillow lava sample yielded SHRIMP zircon U–Pb age of 302 ± 14 Ma. Massive and pillow basalts in the Enger Us ophiolite exhibit N-MORB geochemical affinities, displaying high TiO2 and low K2O contents with tholeiitic signatures. They are characterized by depletion of light rare earth elements (LREEs) without fractionation of high field strength elements (HFSEs) and negative Nb–Ta anomalies. It is inferred that the magmas of these rocks were derived from a depleted mantle source in a mid-ocean ridge setting. The Quagan Qulu ophiolite is composed of tectonic blocks, including ultramafic, gabbros and siliceous rocks, and matrix, including deformed clastic rocks and limestones. Zircons in a gabbro sample from the Quagan Qulu ophiolite yielded SHRIMP zircon U–Pb age of 275 ± 3 Ma. The gabbros show high MgO contents, compatible elements (Ni, Co, Sc, and V), and Al2O3/TiO2 ratios, but low TiO2 and SiO2 contents. They are enriched in large-ion lithophile elements (LILEs) and depleted in LREEs and HFSEs, indicating that they were derived from an extremely depleted mantle source which was infiltrated by a subduction-derived fluid or melt. Our geochemical data suggest that gabbros in the Quagan Qulu ophiolite were formed in a back-arc basin setting. A synthesis of evidence from geochemistry, regional geology, and paleobiogeography support the notion that the Enger Us ophiolitic belt represents the major suture of the Paleo-Asian Ocean in the NMAB and the Quagan Qulu ophiolitic belt represents a back-arc basin. These two ophiolitic belts, together with the Zongnaishan–Shalazhashan arc have been suggested to be a late Paleozoic ocean-arc–back-arc basin system in the southernmost part of the Altaids. The geochronological data suggest that the subduction process occurred even in the early Permian, indicating that the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

3.
The composite Zhaheba ophiolite complex, exposed in Eastern Junggar in the Southern Altaids, records an unusually long record of oceanic crust and magmatic arc evolution. The Zhaheba ophiolite complex consists of ultramafic rocks, gabbro, diorite, basalt and chert intruded by diabase dikes and diorite porphyry. These rocks are overlain by a several-km-thick section of tuffaceous rocks, volcaniclastic sedimentary rocks, and intermediate volcanic rocks. The igneous rocks of the ophiolite complex show negative Nb and Ta anomalies and LREE enrichment relative to HREE, suggesting the influence of fluids derived from a subducting oceanic slab. The LA-ICPMS U–Pb age of zircons from gabbro is 495.1 ± 3.5 Ma. Zircon ages from diorite and basalt are 458.3 ± 7.2 Ma and 446.6 ± 6.0 Ma, respectively. The basalt is locally overlain by bedded chert. Diabase dikes and diorite porphyry yield the U–Pb ages of 421.5 ± 4.1 Ma and 423.7 ± 6.5 Ma, respectively. The age of stratigraphically lower part of the overlying volcanic–volcaniclastic section is constrained to be about 410 Ma, the maximum depositional age of the tuffaceous sandstone from U–Pb detrital zircon ages. Late rhyolite at the top of the stratigraphic section yielded a U–Pb zircon age of 280.3 ± 3.7 Ma. The age and stratigraphic relationships for the Zhaheba ophiolite complex and related rocks suggest that the period of ~ 70 Ma of initial supra-subduction magmatism was followed by construction of a mature island arc that spanned an additional 140 Ma. Many other ophiolites in the southern Altaids appear to record similar relationships, and are represented as substrates of oceanic island arcs covered by island arc volcanism in supra-subduction zone. The occurrence of the Zhaheba ophiolite complex with tuffaceous and intermediate to felsic volcanic rocks is different from the rock association of classic Tethyan SSZ ophiolites but similar to some ophiolites in North America. Although the Zhaheba ophiolite belt is flanked by the Dulate arc in the north and Yemaquan arc in the south, it cannot stand a suture between two arcs. It is suggested that Devonian–Carboniferous Dulate arc was built on the late Cambrian–middle Ordovician Zhaheba supra-subduction oceanic crust. The late Carboniferous rocks and early Permian rocks in Dulate arc are interpreted to form in the extensional process within Zhaheba–Dulate arc composite system.  相似文献   

4.
The Xiaohuangshan ophiolite of the Beishan (Inner Mongolia) is located in the southern margin of the Central Asian Orogenic Belt. It consists of several blocks composed dominantly of serpentinized ultramafic rocks, cumulative gabbros and basalts. The geochemical data of gabbros and basalts obtained from the Xiaohuangshan ophiolite are similar to tholeiitic rocks. They all have low TiO2 and high Al2O3 contents. Their light rare earth elements are slightly enriched, (La/Yb)N = 3.62–6.80, similar to the typical enriched mid-ocean ridge basalts. The mafic rocks display enrichments in large ion lithophile elements and depletions in high field strength elements, as well as significant Nb–Ta–Ti negative anomalies, similar to subduction-derived rocks. All these geochemical characteritics indicate that the Xiaohuangshan ophiolite would form in a subduction zone from a slightly enriched mantle source. Ion microprobes (SHRIMP) U–Pb dating were conducted on zircons from the basalt and gabbro. The weighted mean ages are 336.4 ± 4.1 Ma and 345 ± 14 Ma, which are considered as the crystallization ages of the basalt and gabbro, respectively. Together with other two units, the Dongqiyishan arc belt and the Yueyashan–Xichangjing ophiolite, the Xiaohuangshan ophiolite forms a Late Paleozoic arc-basin system, indicating that the Paleo-Asian Ocean did not close in the early Carboniferous. Based on the geochemical characteristics of adjacent geological bodies and their settings, the Xiaohuangshan ophiolite is considered as an indicator of a suture zone between the different epicontinental belts in the Beishan region.  相似文献   

5.
The Yandong porphyry copper deposit, located in the Eastern Tianshan Mountains, Xinjiang, China, is part of the Central Asian Orogenic Belt. The Yandong deposit is hosted by a volcanic complex in the Early Carboniferous Qi’eshan Group and a felsic intrusion. The complex consists of andesite, basalt, diorite porphyry, and porphyritic quartz diorite. The felsic intrusion is a plagiogranite porphyry emplaced within the complex. The diorite porphyry and plagiogranite porphyry yield SIMS zircon U–Pb ages of 340.0 ± 3 and 332.2 ± 2.3 Ma, respectively. Element geochemistry shows that both the complex and plagiogranite porphyry formed in the Dananhu–Tousuquan island arc, a Carboniferous magmatic arc.The diorite porphyry and plagiogranite porphyry are host porphyries, but the plagiogranite porphyry is a productive porphyry. It caused the porphyry-style Cu mineralization and associated alteration. The alteration assemblages include early potassic and propylitic assemblages. These were overprinted by a chlorite–sericite assemblage, which in turn was overprinted by a late phyllic assemblage. The phyllic alteration is associated with the highest Cu grades. The mineralization is recognized to include three stages, from early to late: stage 1, a potassic alteration associated with a chalcopyrite + pyrite assemblage; stage 2, represented by chlorite–sericite alteration with a chalcopyrite + pyrite assemblage; and stage 3, the main-ore stage that is marked by phyllic alteration with chalcopyrite + pyrite ± molybdenite and producing more than 70% of the total copper production at Yandong. Yandong may represent a common scenario for Paleozoic porphyry Cu systems in the Central Asian Orogenic Belt.  相似文献   

6.
The Balkhash Metallogenic Belt (BMB) in Kazakhstan, Central Asia, with the occurrence of the super-large Kounrad and Aktogai, the large Borly porphyry Cu–Mo deposits, and the large Sayak skarn polymetallic ore-field, is one of the central regions of the Paleozoic Central Asian metallogenic domain and orogenic belt. In this study, newly obtained SHRIMP zircon U–Pb ages of nine samples and 40Ar/39Ar ages of six mineral samples (inclding hornblende, biotite and K-feldspar) give more detailed constraints on the timing of the granitic intrusions and their metallogeny. Porphyritic monzonite granite and tonalite porphyry from the Kounrad deposit yield U–Pb zircon SHRIMP ages of 327.3 ± 2.1 Ma and 308.7 ± 2.2 Ma, respectively. Quartz diorite and porphyritic granodiorite from the Aktogai deposit yield U–Pb SHRIMP ages of 335.7 ± 1.3 Ma and 327.5 ± 1.9 Ma, respectively. Porphyritic granodiorite and granodiorite from the Borly deposit yield U–Pb SHRIMP ages of 316.3 ± 0.8 Ma and 305 ± 3 Ma, respectively. Diorite, granodiorite, and monzonite from the Sayak ore-field yield U–Pb SHRIMP ages of 335 ± 2 Ma, 308 ± 10 Ma, and 297 ± 3 Ma, respectively. Hornblende, biotite, and K-feldspar from the Aktogai deposit yield 40Ar/39Ar cooling ages of 310.6 Ma, 271.5 Ma, and 274.9 Ma, respectively. Hornblende, biotite, and K-feldspar from the Sayak ore-field yield 40Ar/39Ar cooling ages of 287.3 ± 2.8 Ma, 307.9 ± 1.8 Ma, and 249.8 ± 1.6 Ma, respectively. The new ages constrain the timing of Late Paleozoic felsic magmatism to ∼336 to ∼297 Ma. Skarn mineralization in the Sayak ore-field formed at ∼335 and ∼308 Ma. Porphyry Cu–Mo mineralization in the Kounrad deposit and the Aktogai deposit formed at ∼327 Ma, and in the Borly deposit at ∼316 Ma. The Late Paleozoic regional cooling in the temperature range of ∼600 °C to ∼150 °C occurred from ∼307 to ∼257 Ma.  相似文献   

7.
《Gondwana Research》2014,25(2):820-841
The Huoshishan–Niujuanzi ophiolitic mélange (HNO) is located near the central part of the Beishan Orogenic Belt in the southernmost Altaids. The HNO consists of ultramafic rocks, cumulate gabbros, gabbros, plagiogranites, diorites, diabases, basalts, andesites, rhyolitic volcaniclastic rocks and siliceous sedimentary rocks, many of which are in a schist matrix (Gongpoquan Group). Geochemical data of the mafic rocks indicate a calc-alkaline or a mixture of calc-alkaline and tholeiitic rocks with negative Nb, Ta and positive Pb, Ba and La anomalies, suggesting formation in an island arc or supra-subduction zone setting. A gabbro from a block in the mélange in the Niujuanzi area has a zircon age of 435.0 ± 1.9 Ma and a plagiogranite with an age of 444.3 ± 1.9 Ma, and another gabbro from the Huoshishan area has an age of 410.5 ± 3.7 Ma. The schist matrix has a zircon age of 512 ± 5.3 Ma and contains Silurian, Devonian and Carboniferous fossils, thus the mélange formed in the late Carboniferous or later. Our structural analysis of fault planes in the HNO, the crenulation cleavages (S2) of the schist, and fold axial planes of early Permian sandy limestone/quartz veins and late Permian sandstones indicates that the mélange underwent a north-to-south compression, and the orientation of stretching lineations, slickensides and fold hinge lines implies that the HNO experienced top-to-the north (or -northwest) movement. The entire planar and linear structural data set suggests that the subduction polarity was probably to the south in the late Paleozoic. The emplacement age of the HNO was probably near the end-Permian based on the age of the youngest rocks in the ophiolitic mélange, and by the presence of a late Permian unconformity. From our work, integrated with published regional data, we outline a comprehensive geodynamic model for the central BOC.  相似文献   

8.
Blueschists are sporadically exposed as lenses within the Lancangjiang metamorphic complex, and represent unique components of the Paleo-Tethys. In this paper, we present geochemical and geochronological results of blueschists to decipher their origin and tectonic significance. The whole-rock geochemical analyses revealed strong similarities with ocean island basalt (OIB), and further discrimination diagrams confirm an affinity to a within-plate setting. Combined studies on blueschists using cathodoluminescence (CL) imaging, SHRIMP U-Pb dating of zircon domains and 40Ar/39Ar dating of phengite and glaucophane provide evidence of their magmatic origin and metamorphic evolution. Slightly oscillatory zoned or compositionally homogeneous zircon grains/domains, as well as structureless zircon rims, yield ages from 231.6 ± 3.7 to 225.3 ± 4.8 Ma, recording the blueschist facies metamorphic event. In contrast, the captured zircon grains and cores with a major age peak at ~241 Ma as well as several minor older age peaks indicate the multiple provenance of the zircons. 40Ar/39Ar step heating analyses on single grains of phengite and glaucophane separated from blueschists yield plateau ages ranging from 242.5 ± 1.4 to 228.7 ± 1.5 Ma which are interpreted to reflect high-pressure metamorphism.This study provides geochemical and geochronological constraints on the tectonic evolution of the Paleo-Tethyan ocean, which was closed and subsequently subducted as a result of the collision of the Simao and Baoshan Blocks. During subduction in Trassic (243 to 225 Ma), the protoliths of blueschists underwent blueschist facies conditions.  相似文献   

9.
《Precambrian Research》2001,105(2-4):115-128
The Aasivik terrane is a ∼1500 km2 complex of gneisses dominated by ∼3600 Ma components, which has been discovered in the Archaean craton of West Greenland, ∼20–50 km south of the Paleoproterozoic Nagssugtoqidian orogen. The Aasivik terrain comprises granulite facies tonalitic to granitic gneisses with bands of mafic granulite, which include disrupted mafic dykes. Four gneiss samples of the Aasivik terrain have given imprecise SHRIMP U–Pb zircon ages of 3550–3780 Ma with strong loss of radiogenic lead and new growth of zircon probably associated with a granulite facies metamorphic event(s) at ∼2800–2700 Ma. To the Southeast, the Aasivik terrane is in tectonic contact with a late Archaean complex of granitic and metapelitic gneisses with apparently randomly distributed mafic and ultramafic units, here named the Ukaleq gneiss complex. Two granitic samples from the Ukaleq gneiss complex have U–Pb zircon ages of 2817 ± 10 and 2820 ± 12 Ma and tzircon εNd values of 2.3–5.4. Given their composition and positive εNd values, they probably represent melts of only slightly older juvenile crust. A reconnaissance SHRIMP U–Pb study of a sample of metasedimentary rock from the Ukaleq gneiss complex found ∼2750–2900 Ma zircons of probable detrital origin and that two or more generations of 2700–2500 Ma metamorphic zircons are present. This gneiss complex is provisionally interpreted as a late Archaean accretionary wedge. A sample of banded granulite facies gneiss from a complex of banded gneisses south of the Aasivik terrain here named the Tasersiaq gneiss complex has yielded two zircon populations of 3212 ± 11 and 3127 ± 12 Ma. Contacts between the three gneiss complexes are mylonites which are locally cut by late-post-kinematic granite veins with SHRIMP U–Pb zircon ages of ∼2700 Ma. The isotopic character and the relationships between the lithologies from the different gneiss complexes suggest the assembly of unrelated rocks along shear zones between 2800 and 2700 Ma. The collage of Archaean gneiss complexes were intruded by A-type granites, here named the Umiatsiaasat granites, at ∼2700 Ma, later than the tectonic intercalation of the gneiss complexes.  相似文献   

10.
《Gondwana Research》2011,19(4):583-595
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced ∼ 600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at ∼ 730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt (∼ 810–780 Ma and ∼ 730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

11.
We report the petrological characteristics and preliminary zircon geochronology based on laser ablation ICP mass spectrometry of the various units in an accretionary belt within the Palghat-Cauvery Shear/Suture Zone in southern India, a trace of the Cambrian Gondwana suture. Zircons extracted from a plagiogranite in association with an ophiolite suite within this suture possess internal structure that suggests magmatic crystallization, and yield mid Neoproterozoic 206Pb/238U age of 817 ± 16 Ma (error: 1σ) constraining the approximate timing of birth of the Mozambique Ocean floor. Compiled age data on zircons separated from a quartzite and metamorphosed banded iron formation within the accretionary belt yields a younger intercept age of 759 ± 41 Ma (error: 1σ) which we relate to a mid Neoproteozoic magmatic arc. Detrital zircons extracted from the quartzite yield 207Pb/206Pb age peaks of about 1.9–2.6 Ga suggesting that they were sourced from multiple protolithis of Neoarchean and Paleoproterozoic. Metamorphic overgrowths on some zircon grains record ca. 500–550 Ma ages which are in good harmony with the known ages for the timing of high-grade metamorphism in this zone during the final stage of continent collision associated with the birth of the Gondwana supercontinent in the latest Neoproterozoic-Cambrian. The preliminary geochronological results documented in our study correlate with the subduction–accretion–collision history associated with the closure of the Mozambique Ocean and the final amalgamation of the Gondwana supercontinent.  相似文献   

12.
Sedimentological and geochronological analyses were performed on Carboniferous strata from central Inner Mongolia (China) to determine the tectonic setting of the southeastern Central Asian Orogenic Belt (CAOB). Sedimentological analyses indicate that the widespread Late Carboniferous strata in central Inner Mongolia were dominated by shallow marine clastic-carbonate deposition with basal conglomerate above the Precambrian basement and Early Paleozoic orogenic belts. Based on lithological comparison and fossil similarity, five sedimentary stages were used to represent the Carboniferous deposition. The depositional stages include, from bottom to top, 1) basal molassic, 2) first carbonate platform, 3) terrigenous with coeval intraplate volcanism, 4) second carbonate platform, and 5) post-carbonate terrigenous. These five stages provide evidence for an extensive transgression in central Inner Mongolia during the Late Carboniferous. Detrital zircon geochronological studies from five samples yielded five main age populations: ~ 310 Ma, ~ 350 Ma, 400–450 Ma, 800–1200 Ma and some Meso-Proterozoic to Neoarchean grains. The detrital zircon geochronological studies indicate that the provenances for these Late Carboniferous strata were mainly local magmatic rocks (Early Paleozoic arc magmatic rocks and Carboniferous intrusions) with subordinate input of Precambrian basement. Combining our sedimentological and provenance analyses with previous fossil comparison and paleomagnetic reconstruction, an inland sea was perceived to be the main paleogeographic feature for central Inner Mongolia during the Late Carboniferous. The inland sea developed on a welded continent after the collision between North China Craton and its northern blocks.  相似文献   

13.
In the southern Chinese Tianshan, the southernmost part of the Central Asian Orogenic Belt (CAOB), widespread ophiolitic mélanges form distinct tectonic units that are crucial for understanding the formation of the CAOB. However, the timing of tectonic events and the subduction polarity are still in controversy. In order to better understand these geological problems, a comprehensive study was conducted on the Heiyingshan ophiolitic mélange in the SW Chinese Tianshan. Detailed structural analysis reveals that the ophiolitic mélange is tectonically underlain by sheared and weakly metamorphosed pre-Middle Devonian rocks, and unconformably overlain by non-metamorphic and undeformed lower Carboniferous (Serpukhovian) to Permian strata. The igneous assemblage of the mélange comprises OIB-like alkali basalt and andesite, N-MORB-like tholeiitic basalt, sheeted diabase dikes, cumulate gabbro and peridotite. Mafic rocks display supra-subduction signatures, and some bear evidence of contamination with the continental crust, suggesting a continental marginal (back-arc) basin setting. Zircons of a gabbro were dated at 392 ± 5 Ma by the U–Pb LA-ICP-MS method. Famennian–Visean radiolarian microfossils were found in the siliceous matrix of the ophiolitic mélange. Mylonitic phyllite which displays northward-directed kinematic evidence yielded muscovite 40Ar/39Ar plateau ages of 359 ± 2 Ma and 356 ± 2 Ma.These new data, combined with previously published results, suggest that the mafic protoliths originally formed in a back-arc basin in the Chinese southern Tianshan during the late Silurian to Middle Devonian and were subsequently incorporated into the ophiolitic mélange and thrust northward during the Late Devonian to early Carboniferous. Opening of the back-arc basin was probably induced by south-dipping subduction of the Paleo-Tianshan Ocean in the early Paleozoic, and the Central Tianshan block was rifted away from the Tarim block. Closure of the back-arc basin in the early Carboniferous formed the South Tianshan Suture Zone and re-amalgamated the two blocks.  相似文献   

14.
The Sittampundi Anorthosite Complex (SAC) in southern India is one of the well exposed Archean layered anorthosite-gabbro-ultramafic rock associations. Here we present high precision geochemical data for the various units of SAC, coupled with zircon U-Pb geochronology and Hf isotopic data for the anorthosite. The zircon ages define two populations, the older yield a concordia age of 2541 ± 13 Ma, which is interpreted as the best estimate of the magmatic crystallization age for the Sittampundi anorthosite. A high-grade metamorphic event at 2461 ± 15 Ma is suggested by the upper intercept age of the younger zircon population. A Neoproterozoic event at 715 ± 180 Ma resulted in Pb loss from some of the metamorphic zircons. The magmatic age of the anorthosite correlates well with the timing of crystallization of the arc-related ~ 2530 Ma magmatic charnockites in the adjacent Salem Block, while the metamorphic age is synchronous with the regional metamorphic event. The geochemical data suggest that the rocks were derived from a depleted mantle source. Sub-arc mantle metasomatism of slab derived fluids and subsequent partial melting produced hydrous, aluminous basalt magma. The magma fractionated at depth to produce a variety of high-alumina basalt compositions, from which the anorthositic complex with its chromite-rich and amphibole-rich layers formed as cumulates within the magma chamber of a supra-subduction zone arc. The coherent initial176Hf/177Hf ratios and positive εHf values (1.7 – 4.5) of the magmatic zircons in the anorthosite are consistent with derivation of a rather homogeneous juvenile parent magma from a depleted mantle source. Our study further confirms that the southern part of the Dharwar Craton was an active convergent margin during the Neoarchean with the generation and emplacement of suprasubduction zone arc magmas which played a significant role in continental growth.  相似文献   

15.
The Tuwu–Yandong porphyry Cu belt is located in the Eastern Tianshan mountains in the eastern Central Asian Orogenic Belt. Petrochemical and geochronological data for intrusive and volcanic rocks from the Tuwu and Yandong deposits are combined with previous studies to provide constraints on their petrogenesis and tectonic affinity. New LA–ICP–MS zircon U–Pb ages of 348.3 ± 6.0 Ma, 339.3 ± 2.2 Ma, 323.6 ± 2.5 Ma and 324.1 ± 2.3 Ma have been attained from intrusive units associated with the deposits, including diorite, plagiogranite porphyry, quartz albite porphyry and quartz porphyry, respectively. The basalt and andesite, which host part of the Cu mineralization, are tholeiitic with high Al2O3, Cr, Ni and low TiO2 contents, enriched LREEs and negative HFSE (Nb, Ta, Zr, Ti) anomalies consistent with arc magmas. Diorites are characterized by low SiO2 content but high MgO, Cr and Ni contents, similar to those of high-Mg andesites. The parental magma of the basalt, andesite and diorite is interpreted to have been derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. The ore-bearing plagiogranite porphyry is characterized by high Na2O, Sr, Cr and Ni contents, low Y and Yb contents, low Na2O/K2O ratios and high Sr/Y ratios and high Mg#, suggesting an adakitic affinity. The high εNd(t) (5.02–9.16), low ISr (0.703219–0.704281) and high εHf(t) (8.55–12.99) of the plagiogranite porphyry suggest they were derived by a partial melting of the subducted oceanic crust followed by adakitic melt-mantle peridotite interaction. The quartz albite porphyry and quartz porphyry are characterized by similar Sr–Nd–Hf isotope but lower Mg# and whole-rock (La/Yb)N ratios to the plagiogranite porphyry, suggesting they were derived from juvenile lower crust, and negative Eu anomalies suggest fractionation of plagioclase. We propose that a flat subduction that started ca. 340 Ma and resulted in formation of the adakitic plagiogranite porphyry after a period of “steady” subduction, and experienced slab rollback at around 323 Ma.  相似文献   

16.
《Gondwana Research》2014,25(3):1272-1286
The Mejillonia terrane, named after the Mejillones Peninsula (northern Chile), has been traditionally considered an early Paleozoic block of metamorphic and igneous rocks displaced along the northern Andean margin in the Mesozoic. However, U–Pb SHRIMP zircon dating of metasedimentary and igneous rocks shows that the sedimentary protoliths were Triassic, and that metamorphism and magmatism took place in the Late Triassic (Norian). Field evidence combined with zircon dating (detrital and metamorphic) further suggests that the sedimentary protoliths were buried, deformed (foliated and folded) and metamorphosed very rapidly, probably within few million years, at ca. 210 Ma. The metasedimentary wedge was then uplifted and intruded by a late arc-related tonalite body (Morro Mejillones) at 208 ± 2 Ma, only a short time after the peak of metamorphism. The Mejillones metamorphic and igneous basement represents an accretionary wedge or marginal basin that underwent contractional deformation and metamorphism at the end of a Late Permian to Late Triassic anorogenic episode that is well known in Chile and Argentina. Renewal of subduction along the pre-Andean continental margin in the Late Triassic and the development of new subduction-related magmatism are probably represented by the Early Jurassic Bólfin–Punta Tetas magmatic arc in the southern part of the peninsula, for which an age of 184 ± 1 Ma was determined. We suggest retaining the classification of Mejillonia as a tectonostratigraphic terrane, albeit in this new context.  相似文献   

17.
Submarine basalt and trachyte of the Nandoumba group occur in eastern Senegal within the Bassarides branch of the Mauritanides orogen. The unit forms part of the parautochthonous domain which is stacked between underlying Neoproterozoic to Paleozoic foreland and overlying Variscan nappes. The crystallisation age of the volcanic to subvolcanic rocks has been determined by U–Pb single zircon SHRIMP method at 428 ± 5.2 Ma whereas zircon xenocryst ages vary from 500 to 2200 Ma. The shape of the xenocryst grains document proximal Neo- and Paleoproterozoic and distal Mesoproterozoic provenance areas for assimilated sediments. This is compatible with the Paleoproterozoic Birimian basement and Neoproterozoic cover rocks nearby whereas an origin from the Amazonian craton could be assumed for distal Mesoproterozoic zircons.Geochemical and Sm–Nd isotope whole rock analysis show that basalts of the Nandoumba group are similar to modern transitional to alkaline volcanic lavas in intraplate settings. Those basalts have a deep mantle source with a great contribution of a recycled mantle component such as EM1 and/or EM2. The basalts resemble in their composition those from the Meguma terrane of Nova Scotia which are of similar age suggesting a common source and therefore connection of Meguma with Gondwana during this period. Review of circum-Atlantic Silurian magmatism indicates ongoing fragmentation of NW-Gondwana that started in Cambro/Ordovician times.  相似文献   

18.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

19.
We present the first evidence of an early Paleozoic terrane in the southern Yanbian region, NE China. We used LA-ICP-MS zircon U–Pb and Hf isotope techniques to analyze one plagioclase gneiss and two garnet-bearing two-mica quartz schists from the early Paleozoic Jiangyu Group, as well as two tonalites that intruded the Jiangyu Group. The tonalites yield weighted mean 206Pb/238U zircon crystallization ages of 423 and 422 Ma. Zircons from the Jiangyu Group gneiss and two schist samples yield maximum depositional ages of 439 ± 4, 443 ± 2, and 443 ± 5 Ma, respectively. These constraints, together with the age of the tonalite intrusion, indicate that the Jiangyu Group was deposited between 443 and 423 Ma (i.e., Silurian). In addition, detrital zircon age spectra of the three Jiangyu Group samples exhibit prominent age peaks at 442, 473, 513, 565, 600, 635, 671, 740, 1000, and 1162 Ma, as well as secondary peaks between 1344 and 3329 Ma. The occurrence of the prominent Meso- and Neoproterozoic detrital zircon age populations for the Jiangyu Group, combined with the corresponding zircon Hf isotopic data, reveals that the Jiangyu Terrane has a tectonic affinity with northeastern Gondwana. The early Paleozoic magmatism, as suggested by the medium-K calc-alkaline I-type tonalite intrusion and Jiangyu Group detrital zircon age spectra, corresponds to coeval subduction–accretion events along the southern margin of the eastern Central Asian Orogenic Belt (CAOB). Accordingly, we propose that the Jiangyu Group is part of an exotic terrane that rifted from northeastern Gondwana, drifted northward, and ultimately became involved in the early Paleozoic tectonic evolution of the southern margin of the eastern CAOB after the Early Cambrian.  相似文献   

20.
We present four SHRIMP U–Pb zircon ages for the Choiyoi igneous province from the San Rafael Block, central–western Argentina. Dated samples come from the Yacimiento Los Reyunos Formation (281.4 ± 2.5 Ma) of the Cochicó Group (Lower Choiyoi section: andesitic breccias, dacitic to rhyolitic ignimbrites and continental conglomerates), Agua de los Burros Formation (264.8 ± 2.3 Ma and 264.5 ± 3.0 Ma) and Cerro Carrizalito Formation (251.9 ± 2.7 Ma Upper Choiyoi section: rhyolitic ignimbrites and pyroclastic flows) spanning the entire Permian succession of the Choiyoi igneous province. A single zircon from the El Imperial Formation, that is overlain unconformably by the Choiyoi succession, yielded an early Permian age (297.2 ± 5.3 Ma), while the main detrital zircon population indicated an Ordovician age (453.7 ± 8.1 Ma). The new data establishes a more precise Permian age (Artinskian–Lopingian) for the section studied spanning 30 Ma of volcanic activity. Volcanological observations for the Choiyoi succession support the occurrence of explosive eruptions of plinian to ultraplinian magnitudes, capable of injecting enormous volumes of tephra in the troposphere–stratosphere. The new SHRIMP ages indicate contemporaneity between the Choyoi succession and the upper part of the Paraná Basin late Paleozoic section, from the Irati up to the Rio do Rasto formations, encompassing about 24 Ma. Geochemical data show a general congruence in compositional and tectonic settings between the volcanics and Paraná Basin Permian ash fall derived layers of bentonites. Thickness and granulometry of ash fall layers broadly fit into the depletion curve versus distance from the remote source vent of ultraplinian eruptions. Thus, we consider that the Choiyoi igneous province was the source of ash fall deposits in the upper Permian section of the Paraná Basin. Data presented here allow a more consistent correlation between tectono-volcanic Permian events along the paleo-Pacific margin of southwestern Gondwana and the geological evolution of neighboring Paleozoic foreland basins in South America and Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号