首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
The Nanling Range in South China is characterized by extensive Mesozoic magmatism and coeval nonferrous and rare metal mineralization. Huangshaping is a world-class Pb-Zn-W-Mo polymetallic skarn deposit in the central Nanling Range. Magmatic rocks occurring in this ore district include quartz porphyry, granite porphyry, granophyre, dacite porphyry, and aplite, with only the first three granitoids genetically associated with polymetallic mineralization. Most of the orebodies are constrained within the contact zones as skarn and veins between these granitic stocks and the carbonate wall rocks.Since the age of the quartz porphyry is still controversial, and studies of the dacite porphyry and aplite are absent, we focus on these magmatic rocks first. LA-ICP-MS zircon U-Pb dating suggests that the crystallization ages of the quartz porphyry, dacite porphyry, and aplite are 154.3 ± 1.9 Ma, 158.1 ± 0.8 Ma, and 148.4 ± 3.4 Ma, respectively. Combined with previously published age data, we infer the evolutionary sequence of magmatic rocks should be dacite porphyry  quartz porphyry  granite porphyry (granophyre)  aplite. The quartz porphyry, dacite porphyry, and aplite yield high contents of high field strength elements (Zr + Nb + Ce + Y = 255–440 ppm), high ratios of 10,000 × Ga/Al (2.6–3.2), and prominent depletions in Ba, Sr, Eu, P, and Ti, indicating their crustal affinities to A-type granites. They have negative εNd(t) values (−9.4 to −7.0) and high initial Pb isotopic ratios (206Pb/204Pbi = 18.307–18.644, 207Pb/204Pbi = 15.689–15.742, 208Pb/204Pbi = 38.589–38.986), suggesting that they were probably derived by partial melting of ancient granulitic crustal materials.The sulfide minerals exhibit a wide range of δ34SV-CDT values from −22.6 to 24.2‰, with 206Pb/204Pb of 17.669–19.708, 207Pb/204Pb of 15.492–15.714, and 208Pb/204Pb of 37.880–39.789, indicating that sulfur, lead, and other associated metals were derived from a mixture of magmatic components and the Carboniferous wall rocks. Fluid inclusions in pyrrhotite, sphalerite, and marmatite samples have 3He/4He ratios of 0.12 to 1.53 Ra, with calculated mantle helium proportions of 1.3 to 18.9%, indicating a predominantly crustal origin for the ore fluids, with minor inputs from the mantle. The Huangshaping deposit is a typical example of the genetic relationship both spatially and temporally between Jurassic magmatism and polymetallic metallogeny in the Nanling Range.  相似文献   

2.
The Huangshaping polymetallic deposit is located in southeastern Hunan Province, China. It is a world-class W–Mo–Pb–Zn–Cu skarn deposit in the Nanling Range Metallogenic Belt, with estimated reserves of 74.31 Mt of W–Mo ore at 0.28% WO3 and 0.07% Mo, 22.43 Mt of Pb–Zn ore at 3.6% Pb and 8.00% Zn, and 20.35 Mt of Cu ore at 1.12% Cu. The ore district is predominantly underlained by carbonate formations of the Lower Carboniferous period, with stocks of quartz porphyry, granite porphyry, and granophyre. Skarns occurred in contact zones between stocks and their carbonate wall rocks, which are spatially associated with the above-mentioned three types of ores (i.e., W–Mo, Pb–Zn, and Cu ores).Three types of fluid inclusions have been identified in the ores of the Huangshaping deposit: aqueous liquid–vapor inclusions (Type I), daughter-mineral-bearing aqueous inclusions (Type II), and H2O–CO2 inclusions (Type III). Systematic microthermometrical, laser Raman spectroscopic, and salinity analyses indicate that high-temperature and high-salinity immiscible magmatic fluid is responsible for the W–Mo mineralization, whereas low-temperature and low-salinity magmatic-meteoric mixed fluid is responsible for the subsequent Pb–Zn mineralization. Another magmatic fluid derived from deep-rooted magma is responsible for Cu mineralization.Chondrite-normalized rare earth element patterns and trace element features of calcites from W–Mo, Pb–Zn, and Cu ores are different from one another. Calcite from Cu ores is rich in heavy rare earth elements (187.4–190.5 ppm), Na (0.17%–0.19%), Bi (1.96–64.60 ppm), Y (113–135 ppm), and As (9.1–29.7 ppm), whereas calcite from W–Mo and Pb–Zn ores is rich in Mn (> 10.000 ppm) and Sr (178–248 ppm) with higher Sr/Y ratios (53.94–72.94). δ18O values also differ between W–Mo/Pb–Zn ores (δ18O = 8.10‰–8.41‰) and Cu ores (δ18O = 4.34‰–4.96‰), indicating that two sources of fluids were, respectively, involved in the W–Mo, Pb–Zn, and Cu mineralization.Sulfur isotopes from sulfides also reveal that the large variation (4‰–19‰) within the Huangshaping deposit is likely due to a magmatic sulfur source with a contribution of reduced sulfate sulfur host in the Carboniferous limestone/dolomite and more magmatic sulfur involved in the Cu mineralization than that in W–Mo and Pb–Zn mineralization. The lead isotopic data for sulfide (galena: 206Pb/204Pb = 18.48–19.19, 207/204Pb = 15.45–15.91, 208/204Pb = 38.95–39.78; sphalerite: 206Pb/204Pb = 18.54–19.03, 207/204Pb = 15.60–16.28, 208/204Pb = 38.62–40.27; molybdenite: 206Pb/204Pb = 18.45–19.21, 207/204Pb = 15.53–15.95, 208/204Pb = 38.77–39.58 chalcopyrite: 206Pb/204Pb = 18.67–19.38, 207/204Pb = 15.76–19.90, and 208/204Pb = 39.13–39.56) and oxide (scheelite: 206Pb/204Pb = 18.57–19.46, 207/204Pb = 15.71–15.77, 208/204Pb = 38.95–39.13) are different from those of the wall rock limestone (206Pb/204Pb = 18.34–18.60, 207/204Pb = 15.49–15.69, 208/204Pb = 38.57–38.88) and porphyries (206Pb/204Pb = 17.88–18.66, 207/204Pb = 15.59–15.69, 208/204Pb = 38.22–38.83), suggesting Pb206-, U238-, and Th 232-rich material are involved in the mineralization. The Sm–Nd isotopes of scheelite (εNd(t) =  6.1 to − 2.9), garnet (εNd(t) =  6.8 to − 6.1), and calcite (εNd(t) =  6.3) from W–Mo ores as well as calcite (εNd(t) =  5.4 to − 5.3) and scheelite (εNd(t) =  2.9) from the Cu ores demonstrate suggest more mantle-derived materials involved in the Cu mineralization.In the present study we conclude that two sources of ore-forming fluids were involved in production of the Huangshaping W–Mo–Pb–Zn–Cu deposit. One is associated with the granite porphyry magmas responsible for the W–Mo and then Pb–Zn mineralization during which its fluid evolved from magmatic immiscible to a magmatic–meteoritic mixing, and the other is derived from deep-rooted magma, which is related to Cu-related mineralization.  相似文献   

3.
The Taoxihu deposit (eastern Guangdong, SE China) is a newly discovered Sn polymetallic deposit. Zircon U-Pb dating yielded 141.8 ± 1.0 Ma for the Sn-bearing granite porphyry and 145.5 ± 1.6 Ma for the biotite granite batholith it intruded. The age of the granite porphyry is consistent (within error) with the molybdenite Re–Os isochron age (139.0 ± 1.1 Ma) of the Sn mineralization, indicating a temporal link between the two. Geochemical data show that the granite porphyry is weakly peraluminous, contain high Si, Na and K, low Fe, Mg, Ca and P, and relatively high Rb/Sr and low K/Rb values. The rocks are enriched in Rb, Th, U, K, and Pb and depleted in Ba, Sr, Ti and Eu, resembling highly fractionated I-type granites. They contain bulk rock initial 87Sr/87Sr of 0.707371–0.707730 and εNd(t) of −5.17 to −4.67, and zircon εHf(t) values from −6.67 to −2.32, with late Mesoproterozoic TDM2 ages for both Nd and Hf isotopes. This suggests that the granite porphyry was likely formed by the partial melting of the crustal basement of Mesoproterozoic overall residence age with minor mantle input.δ34SCDT values of the Taoxihu chalcopyrite and pyrite range from 0.1 to 2.1‰ (average: 0.9‰), implying a dominantly magmatic sulfur source. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the Taoxihu sulfide ores are 18.497–18.669, 15.642–15.673 and 38.764–38.934, respectively, indicating a mainly upper continental crustal lead source with minor mantle contribution. The highly fractionated and reduced (low calculated zircon Ce4+/Ce3+ and EuN/EuN1 values) nature of the ore-forming granitic magma may have facilitated the Sn enrichment and played a key role in the Sn mineralization. We propose that the ore-forming fluids at Taoxihu were of magmatic-hydrothermal origin derived from the granite porphyry, and that both the granite porphyry and the Sn mineralization were likely formed in an extensional setting, possibly related to the subduction slab rollback of the Paleo-Pacific Plate.  相似文献   

4.
The Hongshan Cu-polymetallic deposit is located in the southern Yidun arc in southwestern China, where both subduction-related (Late Triassic) and post-collisional (Late Cretaceous) porphyry–skarn–epithermal mineralization systems have been previously recognized. In this study, two distinct magmatic events, represented by diorite porphyry and quartz monzonite porphyry, have been revealed in the Hongshan deposit, with zircon SHRIMP U–Pb ages of 214 ± 2 Ma and 73.4 ± 0.7 Ma, respectively. The 73 Ma age is comparable to the Re–Os ages of 77 to 80 Ma of ore minerals from the Hongshan deposit, indicating that the mineralization is related to the Late Cretaceous quartz monzonite porphyries rather than Late Triassic diorite porphyries. The Late Triassic diorite porphyries belong to the high-K calc-alkaline series and show arc magmatic geochemical characteristics such as enrichment in Rb, Ba, Th and U and depletion in HFSEs, indicating that they were formed during the westward subduction of the Garzê–Litang Ocean. In contrast, the Late Cretaceous quartz monzonite porphyries show shoshonitic I-type geochemical characteristics, with high SiO2, K2O, LILE, low HREE, Y and Yb contents, and high LREE/HREE and La/Yb ratios. These geochemical characteristics, together with the Sr–Nd–Pb isotopic compositions (average (87Sr/86Sr)i = 0.7085; εNd(t) =  6.0; 206Pb/204Pb = 19.064, 207Pb/204Pb = 15.738, 208Pb/204Pb = 39.733) suggest that the quartz monzonite porphyries originated from the partial melting of the ancient lower crust in response to underplating of mafic magma from subduction metasomatized mantle lithosphere, possibly triggered by regional extension in the post-collisional tectonic stage. The S isotopic compositions (δ34SV-CDT = 3.81‰ to 5.80‰) and Pb isotopic compositions (206Pb/204Pb = 18.014 to 18.809, 207Pb/204Pb = 15.550 to 15.785, and 208Pb/204Pb = 38.057 to 39.468) of ore sulfides indicate that the sulfur and metals were derived from mixed mantle and crustal sources. It is proposed that although the Late Triassic magmatic event is not directly related to mineralization, it contributed to the Late Cretaceous mineralization system through the storage of large amounts of sulfur and metals as well as water in the cumulate zone in the mantle lithosphere through subduction metasomatism. Re-melting of the mantle lithosphere including the hydrous cumulate zone and ancient lower crust during the post-collisional stage produced fertile magmas, which ascended to shallow depths to form quartz monzonite porphyries. Hydrothermal fluids released from the intrusions resulted in porphyry-type Mo–Cu ores in and near the intrusions, skarn-type Cu–Mo ores in the country rocks above the intrusions, and hydrothermal Pb–Zn ores in the periphery.  相似文献   

5.
The Wunugetushan porphyry Cu–Mo deposit is located in the Manzhouli district of NE China, on the southern margin of the Mesozoic Mongol–Okhotsk Orogenic Belt. Concentric rings of hydrothermal alteration and Cu–Mo mineralization surround an Early–Middle Jurassic monzogranitic porphyry. The Cu–Mo mineralization is clearly related to the quartz–potassic and quartz–sericite alteration. Molybdenite Re–Os and groundmass 40Ar/39Ar of the host porphyry dates indicate that the ore-formation and porphyry-emplacement occurred at 177.6 ± 4.5 Ma and 179.0 ± 1.9 Ma, respectively. Geochemically, the host porphyry of the deposit is characterized by strong LREE/HREE fractionation, enrichment in LILE, Ba, Rb, U, Th and Pb, and depletion of HFSE, Nb, Ta, Ti and HREE. The Sr–Nd–Pb isotopic compositions of the porphyry display an varied initial (87Sr/86Sr)i ratio, a positive εNd(t) values and high 206Pb/204Pbt, 207Pb/204Pbt and 208Pb/204Pbt ratios. These data indicate that the magmatic source of the host porphyry comprised two end-members: lithospheric mantle metasomatized by fluids derived from the subducted slab; and continental crust. We infer that the primitive magma of the host porphyry was derived from crust–mantle transition zone. Based on regional geology and geochemistry of the host porphyry, the Wunugetushan deposit is suggested to form in a continental collision environment after closure of the Mongol–Okhotsk Ocean.  相似文献   

6.
The Wangjiazhuang porphyry–breccia Cu(–Mo) deposit is located in the Zouping volcanic basin, western Shandong Province. Seven molybdenite samples yield a Re–Os weighted mean age of 127.8 ± 0.7 Ma (2σ), which is identical within error to the zircon weighted mean 206Pb/238U age of 128.3 ± 1.3 Ma (2σ) determined for quartz monzonite samples. The host rock is characterized by high concentrations of K2O (4.26–4.53 wt.%), Na2O (4.97–5.76 wt.%), LILEs and LREEs, and high Mg# (> 40), and low concentrations of HFSEs and HREEs, with K2O/Na2O ratios of 0.76–0.88. The quartz monzonite also has high Sr/Y (69.9–112.5) and (La/Yb)N (22.0–30.0) ratios, similar to adakitic rocks worldwide. Relatively low initial 87Sr/86Sr ratios (0.70549–0.70556), high εNd(t) values (2.58–3.06), high radiogenic Pb [(206Pb/204Pb)i = 18.3424–18.4606, (207Pb/204Pb)i = 15.5692–15.5985, (208Pb/204Pb)i = 38.1714–38.2734] and high zircon εHf(t) values (− 2.1 to + 4.3) indicate that the magma was likely derived from the partial melting of subducted oceanic crust which then reacted with the peridotitic mantle wedge. Both the breccia and porphyry ores have a narrow range of δ34S (− 4.8 to + 2.1‰) and Pb isotopic compositions (206Pb/204Pb = 18.295–18.402, 207Pb/204Pb = 15.551–15.573, and 208Pb/204Pb = 38.215–38.331), suggesting that the ore metals were extracted primarily from the quartz monzonite or similar source. Subduction of the Paleo-Pacific slab during the Early Cretaceous resulted in the formation of the Wangjiazhuang quartz monzonite and associated Cu(–Mo) deposit in western Shandong Province.  相似文献   

7.
The newly discovered Yuanlingzhai porphyry molybdenum (Mo) deposit in southern Jiangxi province belongs to the group of Mo-only deposits in the Nanling region. The mineralization developed at contact zones between the Yuanlingzhai granite porphyry and Neoproterozoic metamorphic rocks of the Xunwu Formation. Precise LA–MC–ICPMS zircon U–Pb dating of the Yuanlingzhai porphyry, as well as the adjacent western Keshubei and eastern Keshubei granites, yielded ages of 165.49 ± 0.59 Ma, 159.68 ± 0.43 Ma, and 185.13 ± 0.52–195.14 ± 0.63 Ma, respectively. Molybdenite Re–Os isochron ages of the ores are 160 ± 1–162.7 ± 1.1 Ma, which is consistent with the age of large-scale W–Sn deposits in South China. The Yuanlingzhai porphyry is characterized by high K2O, P2O5, and A/CNK (1.33–1.59), and low CaO and Na2O. The rock shows relatively enriched LREE without significant Eu anomalies (Eu/Eu* = 0.80–0.90). Geochemical and mineralogical characteristics indicate that the ore-hosting porphyry is a typical S-type granite generated from the partial melting of crustal material with only minor mantle contribution. Both Harker and evolutionary discrimination diagrams indicate that the Yuanlangzhai and western Keshubei granites are not products of co-magmatic evolution. The Keshubei granites and Xunwu Formation were not significant sources for the components in the porphyry mineralization, but the Yuanlangzhai granite may have supplied some ore-forming material. However, the main ore-forming material was carried by fluids from deep sources, as demonstrated by fluid inclusion and stable isotope data from the molybdenum deposit. The Mo porphyry deposit formed in an extensional setting, and was possibly associated with Jurassic subduction of the Izanagi Plate.  相似文献   

8.
The Yinjiagou Mo–Cu–pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit’s mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz–molybdenite, quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite, and calcite–galena–sphalerite in the sulfide episode, and chalcedony–limonite in the supergene episode. Re–Os and 40Ar–39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O–CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4–44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite veins is 382–416 °C, and the salinity is 3.6–40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6–42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite stockworks is in a range of 321–411 °C, and the salinity is 6.3–16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–sericite–pyrite is in a range of 326–419 °C, and the salinity is 4.7–49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O–NaCl–KCl ± CO2 system. The δ18OH2O values of ore-forming hydrothermal fluids are 4.0–8.6‰, and the δDV-SMOW values are between −64‰ and −52‰, indicating that the ore-forming fluids were primarily magmatic. The δ34SV-CDT values of sulfides range between −0.2‰ and 6.3‰ with a mean of 1.6‰, sharing similar features with deeply sourced sulfur, implying that the sulfur mainly came from the lower crust composed of poorly differentiated igneous materials, but part of the heavy sulfur came from the Guandaokou Group dolostone. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of sulfides are in the range of 17.331–18.043, 15.444–15.575, and 37.783–38.236, respectively, which is generally consistent with the Pb isotopic signature of the Yinjiagou intrusion, suggesting that the Pb chiefly originated from the felsic–intermediate intrusive rocks in the mine area, with a small amount of lead from strata. The Yinjiagou deposit is a porphyry–skarn deposit formed during the Mesozoic transition of a tectonic regime that is EW-trending to NNE-trending, and the multiepisode boiling of ore-forming fluids was the primary mechanism for mineral deposition.  相似文献   

9.
The Wulaga gold deposit, located in Heilongjiang province, NE China, is a subvolcanic rock-hosted, low-sulfidation epithermal gold deposit, and has an Au reserve of about 84 tons. The gold mineralization occurs in a crypto-explosive breccia, and is spatially and temporally associated with an Early Cretaceous granodioritic porphyry. Three individual stages of mineralization have been identified in the Wulaga gold deposit: an early white quartz-euhedral vein stage, a fine-grained pyrite–marcasite–stibnite–chalcedony stage, and a late calcite–pyrite stage. The sulfur isotopic values of sulfide minerals vary in a wide range from − 4 to 4.9‰, but are concentrated in the range of − 3 to 0‰, implying that sulfur in the hydrothermal fluids was derived from magmatic volatiles. Lead isotopic results of the granodioritic porphyry (206Pb/204Pb = 18.341–18.395, 207Pb/204Pb = 15.507–15.523, 208Pb/204Pb = 38.174–38.251) and sulfide minerals (206Pb/204Pb = 18.172–18.378, 207Pb/204Pb = 15.536–15.600, 208Pb/204Pb = 38.172–38.339) are comparatively consistent and clustered together between the orogenic and upper mantle lines, indicating the lead in the ores is closely related to the parent magma of the granodioritic porphyry. The REE patterns of fluid inclusions trapped in sulfides are similar to those of the granodioritic porphyry, which confirms the magmatic origin of the REE in the hydrothermal fluids. The characteristics of S and Pb isotopes and REE suggest that the ore-forming materials of the Wulaga gold deposit are partly magmatic in origin, and related to a high-level hydrous granodioritic magma.  相似文献   

10.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

11.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

12.
The Chalukou giant porphyry Mo deposit, located in the northern Great Xing'an Range, is the largest Mo deposit in the Xing'an–Mongolia orogenic belt. This deposit's ore bodies are mainly hosted in an intermediate–felsic complex and Jurassic volcanic sedimentary rocks, of which Late Jurassic granite porphyry, quartz porphyry and fine grained granite are closely associated with the Mo mineralization. Three types of fluid inclusions (FIs) are present in the quartz associated with oxide and sulphide minerals, i.e., liquid-rich two-phase, gas-rich two-phase and daughter mineral-bearing multiphase FIs. The FIs in the quartz phenocrysts of the granite porphyry contain liquid-rich two-phase, gas-rich two-phase and daughter mineral-bearing multiphase FIs. The homogenization temperatures vary from 230 °C to 440 °C and 470 °C to 510 °C, and their salinities vary from 0.7% to 53.7% NaCl eq. and 6.2% to 61.3% NaCl eq., respectively. The FIs of K-feldspar–quartz–magnetite veins of the early stage are composed of liquid-rich two-phase, gas-rich two-phase and daughter mineral-bearing multiphase FIs with homogenization temperatures and salinities of 320 °C to 440 °C and 4.2% to 52.3% NaCl eq., respectively. The FIs of quartz–molybdenite veins and breccia of the middle stage are composed of liquid-rich two-phase, gas-rich two-phase and daughter mineral-bearing multiphase FIs with homogenization temperatures and salinities of 260 °C to 410 °C and 0.4% to 52.3% NaCl eq., respectively. FIs of quartz–fluorite–galena–sphalerite veins of the late stage are liquid-rich two-phase FIs with homogenization temperatures and salinities of 170 °C to 320 °C and 0.5% to 11.1% NaCl eq., respectively. The ore-forming fluids of the Chalukou deposit are characterised by high temperature, high salinity and high oxygen fugacity, belonging to an F-rich H2O–NaCl ± CO2 system. The δ18OW values vary from − 4.5‰ to 3.2‰, and the δDW values vary from − 138‰ to − 122‰, indicating that the ore-forming fluids were a mixture of magmatic and meteoric water. The δ34S values range from − 1.9‰ to + 3.6‰ with an average of + 1.6‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of the metallic minerals are in the ranges of 18.269–18.501, 15.524–15.567 and 38.079–38.264, respectively. Both the S and Pb isotopic systems indicate that the ore metals and fluids came primarily from a deep-seated magma source from the juvenile lower crust. The Mo mineralization in the Chalukou deposit occurred at a depth of 0.5 to 1.3 km, and multiple stages of phase separation or immiscibility of ore-forming fluid was critical for the formation of the Chalukou deposit.  相似文献   

13.
The Xishan deposit, located in the western Guangdong Province in South China, is a quartz-vein type W-Sn deposit with an average Sn grade of 0.1–0.4 wt%. The deposit is temporally and spatially associated with Xishan alkali feldspar granite. The W–Sn mineralization is present mainly as veins that are hosted by the granite. In this paper we present new zircon U–Pb age, whole-rock geochemical data, Sr–Nd–Pb–Hf isotopic data and Re–Os age in order to constrain the nature and timing of magmatism and mineralization in the Xishan mining district with implications on geodynamic settings. LA–ICP–MS zircon U–Pb analyses yielded an age of 79.14 ± 0.31 Ma for the alkali feldspar granite, consistent with the molybdenite Re–Os age of 79.41 ± 1.11 Ma. The alkali feldspar granite shows high contents of SiO2 (71.52–76.25 wt%), high total alkalis (Na2O + K2O = 9.35–13.51 wt%), high field strength elements (e.g. Zr = 95.4–116 ppm, Y = 97.1–138 ppm, Nb = 36.1–55.5 ppm, Ga = 97.1–138 ppm), and rare earth elements (total REE = 171.8–194.0 ppm) as well as high Ga/Al ratios (10,000 × Ga/Al = 3.23–3.82) suggesting that it has the geochemical characteristics of A-type granite and shows an A2 subtype affinity. Sr–Nd isotopes of the alkali feldspar granite show that (87Sr/86Sr)i values range from 0.7111 to 0.7183, and the εNd(t) values and Nd model ages (T2DM) vary from −6.8 to −6.5 and 1414 to 1433 Ma, respectively. The Pb isotopic compositions are variable, with 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values ranging from 18.783 to 18.947, 15.709 to 15.722 and 38.969 to 39.244, respectively, indicating that the alkali feldspar granite was derived from a mantle-crust mixed source. In situ Hf isotopic analyses reveal that the alkali feldspar granite has εHf(t) values ranging from −9.69 to −0.04 and two-stage Hf model ages from 1145 Ma to 1755 Ma, indicating that the alkali feldspar granite was formed by the partial melting of Mesoproterozoic crusts of the Cathaysia Block with additions of mantle-derived materials. These results, together with previously presented regional geological relationships, suggest that the formation of the Xishan granite and associated W–Sn mineralization is related to lithospheric extension and asthenospheric upwelling that are attributed to a directional change of Pacific plate motion.  相似文献   

14.
Porphyry systems are known to form in magmatic arc environment and commonly include porphyry Cu, epithermal Pb–Zn–Au–Ag, skarn polymetallic mineralization, etc. The systems are rarely reported in collisional zones, such as the Gangdese belt in southern Tibet where many postcollisional porphyry copper deposits occurred. In addition, other types of mineral systems are rarely present except porphyry copper mineralization in the Gangdese belt. In this study, we present Pb–Zn-bearing quartz veins at Luobuzhen in the western Gangdese belt. The Luobuzhen Pb–Zn veins cross-cut dacite of the Linzizong Group with zircon U–Pb age of 50.1 ± 0.2 Ma and monzogranite with zircon U–Pb age of 17.1 ± 0.1 Ma. Ore minerals include sphalerite, galena, chalcopyrite, and pyrite; gangue minerals are quartz with minor chlorite and sericite. Primary fluid inclusions of quartz are liquid-rich, aqueous, and two-phase inclusions. The homogenization temperatures of these primary inclusions are moderate to high (267–400 °C), and salinities range from 8.9 to 18.4 wt.% NaCl equiv. Quartz has δ18OSMOW values of 6.2–9.3‰, while sulfides have δ34SV-CDT values of −5.1‰ to 0.1‰, 206Pb/204Pb of 18.722–18.849, 207Pb/204Pb of 15.640–15.785, and 208Pb/204Pb of 39.068–39.560. These data suggest that magmatic fluids with contribution from meteoric water, magmatic sulfur, and lead derived from upper crust and metasomatized mantle by Indian continental materials would be critical for the Luobuzhen base metal mineralization.The Dongshibu area, located at ∼2 km east of the Luobuzhen, is characterized by high concentrations of Cu (up to 1450 ppm) and Mo (up to 130 ppm) of stream sediments, which is quite different from high concentrations in Pb, Zn, Ag, and Au shown in the Luobuzhen area. In addition, porphyry copper mineralization-related alteration and veins/veinlets occur in the Miocene monzogranite at Dongshibu. The monzogranite is characterized by high Sr/Y ratios, which are also shown on ore-forming intrusions in the Gangdese postcollisional porphyry copper deposits, and shows similar zircon Hf isotopes to the ore-related high Sr/Y intrusions from the Zhunuo porphyry copper deposit which is located ∼20 km northeast of the Luobuzhen-Dongshibu. A comprehensive analysis allows us to infer that the base metal veins at Luobuzhen are components of a porphyry Cu system with porphyry Cu mineralization likely present at Dongshibu and epithermal Au–Ag veins possibly occurring at Luobuzhen, which are indicative of the existence of porphyry copper systems in collisional zones. The potential porphyry Cu mineralization and epithermal Au–Ag veins should be targeted in future exploration at Luobuzhen-Dongshibu.  相似文献   

15.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/204Pb = 18.17–18.24, 207Pb/204Pb = 15.69–15.71, 208Pb/204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals (206Pb/204Pb = 18.11–18.40, 207Pb/204Pb = 15.66–15.76, 208Pb/204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part (206Pb/204Pb = 18.17–18.19), whereas the latter has higher 208Pb/204Pb ratios (38.59–38.63) than the former (208Pb/204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/86Sr ratios of country sedimentary rocks (87Sr/86Sr200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks (87Sr/86Sr200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area.  相似文献   

16.
The northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt (NGPB), characterized by skarn and porphyry deposits, is one of the most important metallogenic belts in the Himalaya–Tibetan continental orogenic system. This belt extends for nearly four hundred kilometers along the Luobadui–Milashan Fault in the central Lhasa subterrane, and contains more than 10 large ore deposits with high potential for development. Three major types of mineralization system have been identified: skarn Fe systems, skarn/breccia Pb–Zn–Ag systems, and porphyry/skarn Mo–Cu–W systems. In this study, we conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf isotopic study of ore-forming rocks in the NGPB, specifically the Jiangga, Jiaduopule, and Rema skarn Fe deposits, and the Yaguila Pb–Zn–Ag deposit. Although some of these deposits (porphyry Mo systems) formed during the post-collisional stage (21–14 Ma), the majority (these three systems) developed during the main (‘soft collision’) stage of the India–Asia continental collision (65–50 Ma). The skarn Fe deposits are commonly associated with granodiorites, monzogranites, and granites, and formed between 65 and 50 Ma. The ore-forming intrusions of the Pb–Zn–Ag deposits are characterized by granite, quartz porphyry, and granite porphyry, which developed in the interval of 65–55 Ma. The ore-forming porphyries in the Sharang Mo deposit, formed at 53 Ma. The rocks from Fe deposits are metaluminous, and have relatively lower SiO2, and higher CaO, MgO, FeO contents than the intrusions associated with Mo and Pb–Zn–Ag mineralization, while the Pb–Zn–Ag deposits are peraluminous, and have high SiO2 and high total alkali concentrations. They all exhibit moderately fractionated REE patterns characterized by lower contents of heavy REE relative to light REE, and they are enriched in large-ion lithophile elements and relatively depleted in high-field-strength elements. Ore-forming granites from Fe deposits display 87Sr/86Sr(i) = 0.7054–0.7074 and εNd(t) =  4.7 to + 1.3, whereas rocks from the Yaguila Pb–Zn–Ag deposit have 87Sr/86Sr(i) = 0.7266–0.7281 and εNd(t) =  13.5 to − 13.3. In situ Lu–Hf isotopic analyses of zircons from Fe deposits show that εHf(t) values range from − 7.3 to + 6.6, with TDM(Hf)C model ages of 712 to 1589 Ma, and Yaguila Pb–Zn–Ag deposit has εHf(t) values from − 13.9 to − 1.3 with TDM(Hf)C model ages of 1216 to 2016 Ma. Combined with existing data from the Sharang Mo deposit, we conclude that the ore-forming intrusions associated with the skarn Fe and porphyry Mo deposits were derived from partial melting of metasomatized lithospheric mantle and rejuvenated lower crust beneath the central Lhasa subterrane, respectively. Melting of the ancient continental material was critical for the development of the Pb–Zn–Ag system. Therefore, it is likely that the source rocks play an important role in determining the metal endowment of intrusions formed during the initial stage of the India–Asia continental collision.  相似文献   

17.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

18.
We report in the paper integrated analyses of in situ zircon U–Pb ages, Hf–O isotopes, whole-rock geochemistry and Sr–Nd isotopes for the Longlou granite in northern Hainan Island, southeast China. SIMS zircon U–Pb dating results yield a crystallization age of ∼73 Ma for the Longlou granite, which is the youngest granite recognized in southeast China. The granite rocks are characterized by high SiO2 and K2O, weakly peraluminous (A/CNK = 1.04–1.10), depletion in Sr, Ba and high field strength elements (HFSE) and enrichment in LREE and large ion lithophile elements (LILE). Chemical variations of the granite are dominated by fractional crystallization of feldspar, biotite, Ti–Fe oxides and apatite. Their whole-rock initial 87Sr/86Sr ratios (0.7073–0.7107) and εNd(t) (−4.6 to −6.6) and zircon εHf(t) (−5.0 to 0.8) values are broadly consistent with those of the Late Mesozoic granites in southeast China coast. Zircon δ18O values of 6.9–8.3‰ suggest insignificant involvement of supracrustal materials in the granites. These granites are likely generated by partial melting of medium- to high-K basaltic rocks in an active continental margin related to subduction of the Pacific plate. The ca. 73 Ma Longlou granite is broadly coeval with the Campanian (ca. 80–70 Ma) granitoid rocks in southwest Japan and South Korea, indicating that they might be formed along a common Andean-type active continental margin of east–southeast Asia. Tectonic transition from the Andean-type to the West Pacific-type continental margin of southeast China likely took place at ca.70 Ma, rather than ca. 90–85 Ma as previously thought.  相似文献   

19.
The Miao'ershan uranium ore district is one of the most important granite-hosted uranium producers in South China. There are several Triassic granite plutons in the Miao'ershan batholith, but uranium ore deposits mainly occur within the Douzhashan granitic body. Precise zircon U–Pb dating indicated that these Triassic granite plutons were emplaced during 204 to 215 Ma. The Douzhashan U-bearing granite lies in the central part of the Miao'ershan batholith, and has higher U contents (8.0 to 26.1 ppm, average 17.0 ppm) than the nearby Xiangcaoping granite (5.0 to 9.3 ppm, average 7.0 ppm) and the Yangqiaoling granite (6.4 to 18.3 ppm, average 11.5 ppm) in the south part of the batholith. The Douzhashan granite is composed of medium-grained two-mica granite, whereas the Xiangcaoping and Yangqiaoling granites are composed of porphyritic biotite granite. Both the Xiangcaoping and Douzhashan granites have high A/CNK ratios (> 1.10), high (87Sr/86Sr)i ratios (> 0.720) and low εNd(t) values (− 11.3 to − 10.4), suggesting that they belong to strongly peraluminous S-type granites. The Douzhashan granite has low CaO/Na2O ratios, high Rb/Sr and Rb/Ba ratios, indicating a partial melting origin of clay-rich pelitic rocks. In contrast, the Xiangcaoping granite formed from clay-poor psammite-derived melt. The Yangqiaoling granite shows different geochemical characteristics with the Douzhashan and Xiangcaoping granites, indicating a different magma source. The Yangqiaoling granite has higher εNd(t) of − 9.4 to − 8.3 and variable A/CNK values from 0.98 to 1.19, suggesting a mixture source of meta-sedimentary rocks and meta-igneous rocks. Crystallization fractionation is not the main mechanism for U enrichment in the Douzhashan granite. We suggest that U-rich pelitic rock sources may be the key factor to generate peraluminous U-bearing granites in South China. Searching for those granites which are reduced, strongly peraluminous and were derived from U-rich pelitic rocks, is the most effective way for exploring granite-hosted U deposits.  相似文献   

20.
The southern segment of the Eastern Ghats Mobile Belt (EGMB) in India was an active convergent margin during Mesoproterozoic, prior to the final collision in Neoproterozoic during the assembly of the Rodinia supercontinent. Here we present mineralogical, whole-rock geochemical, zircon U–Pb and Hf isotopic data from a granitoid suite in the Bopudi region in the EGGB. The granitoid complex comprises quartz monzodiorite with small stocks of rapakivi granites. The monzodiorite, locally porphyritic, contains K-feldspar megacrysts, plagioclase, quartz, biotite and ortho-amphibole. The presence of mantled ovoid megacrysts of alkali feldspar embaying early-formed quartz, and the presence of two generations of the phenocrystic phases in the rapakivi granites indicate features typical of rapakivi granites. The K-feldspar phenocrysts in the rapakivi granite are mantled by medium-grained aggregates of microcline (Ab7 Or93), which is compositionally equivalent to the rim of Kfs phenocryst and Pl (An23–24 Ab75). The geochemistry of both the granitoids shows arc-like features for REE and trace elements. LA-ICP-MS zircon analyses reveal 207Pb/206Pb ages of 1582 (MSWD = 1.4) for the rapakivi granite 1605 ± 3 Ma (MSWD = 3.9) for the monzodiorite. The zircons from all the granitoid samples show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. The zircons from the monzodiorite have a limited variation in initial 176Hf/177Hf ratios of 0.28171–0.28188, with εHf(t) values of −2.2 to +2.8. Correspondingly, their two-stage Hf isotope model ages (TDM2) ranging from 2.15 to 2.47 Ga probably suggest a mixed source for the magma involving melting of the Paleoproterozoic basement and injection of subduction-related juvenile magmas. The prominent Mesoproterozoic ages of these granitoids suggest subduction-related arc magmatism in a convergent margin setting associated with the amalgamation of the Columbia-derived fragments within the Neoproterozoic Rodinia assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号