首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan–Pulgaon and Ujjan–Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north–south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha–Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to ∼23 mW/m2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.  相似文献   

2.
Geothermal gradients and present day heat flow values were evaluated for about seventy one wells in parts of the eastern Niger delta, using reservoir and corrected bottom–hole temperatures data and other data collected from the wells. The results showed that the geothermal gradients in the shallow/continental sections in the Niger delta vary between 10 - 18° C/km onshore, increasing to about 24° C/km seawards, southwards and eastwards. In the deeper (marine/paralic) section, geothermal gradients vary between 18 - 45° C/km. Heat flow values computed using Petromod 1–D modeling software and calibrated against corrected BHT and reservoir temperatures suggests that heat flow variations in this part of the Niger delta range from 29–55 mW/m2 (0.69–1.31 HFU) with an average value of 42.5 mW/m2 (1.00 HFU). Heat flow variations in the eastern Niger delta correspond closely to variations in geothermal gradients. Geothermal gradients increase eastwards, northwards and seawards from the coastal swamp. Vertically, thermal gradients in the Niger delta show a continuous and non-linear relationship with depth, increasing with diminishing sand percentages. As sand percentages decrease eastwards and seawards, thermal gradient increases. Lower heat flow values (< 40 mW/m2) occur in the western and north central parts of the study area. Higher heat flow values (40 - 55 mW/m2) occur in the eastern and northwestern parts of the study area. A significant regional trend of eastward increase in heat flow is observed in the area. Other regional heat flow trends includes; an eastwards and westwards increase in heat flow from the central parts of the central swamp and an increase in heat flow from the western parts of the coastal swamp to the shallow offshore. Vertical and lateral variations in thermal gradients and heat flow values in parts of the eastern Niger delta are influenced by certain mechanisms and geological factors which include lithological variations, variations in basement heat flow, temporal changes in thermal gradients and heat flow, related to thicker sedmentary sequence, prior to erosion and evidenced by unconformities, fluid redistribution by migration of fluids and different scales of fluid migration in the sub-surface and overpressures.  相似文献   

3.
Tectonically active Vindhyan intracratonic basin situated in central India, forms one of the largest Proterozoic sedimentary basins of the world. Possibility of hydrocarbon occurrences in thick sediments of the southern part of this basin, has led to surge in geological and geophysical investigations by various agencies. An attempt to synthesize such multiparametric data in an integrated manner, has provided a new understanding to the prevailing crustal configuration, thermal regime and nature of its geodynamic evolution. Apparently, this region has been subjected to sustained uplift, erosion and magmatism followed by crustal extension, rifting and subsidence due to episodic thermal interaction of the crust with the hot underlying mantle. Almost 5–6 km thick sedimentation took place in the deep faulted Jabera Basin, either directly over the Bijawar/Mahakoshal group of mafic rocks or high velocity-high density exhumed middle part of the crust. Detailed gravity observations indicate further extension of the basin probably beyond NSL rift in the south. A high heat flow of about 78 mW/m2 has also been estimated for this basin, which is characterized by extremely high Moho temperatures (exceeding 1000 °C) and mantle heat flow (56 mW/m2) besides a very thin lithospheric lid of only about 50 km. Many areas of this terrain are thickly underplated by infused magmas and from some segments, granitic–gneissic upper crust has either been completely eroded or now only a thin veneer of such rocks exists due to sustained exhumation of deep seated rocks. A 5–8 km thick retrogressed metasomatized zone, with significantly reduced velocities, has also been identified around mid to lower crustal transition.  相似文献   

4.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

5.
Kuqa foreland depression of the Tarim Basin is one of the largest gas production provinces in China. Thermal history reconstruction using vitrinite reflectance data indicates that the palaeo-heat flow in Kuqa depression was relatively high (50–55 mW/m2) during the Mesozoic, but gradually decreased during the Cenozoic to reach the present value of 40–50 mW/m2. The cooling of the Kuqa depression is probably attributed to the crust thickening and the rapid sedimentary rate. The Jurassic source rocks entered conventional oil window at 100 Ma, and began to generate gas at approximately 75 Ma in the Kelasu area. Thermal maturation of the Jurassic source rocks accelerated significantly since 23.3 Ma, especially in the recent 5.2 Ma. In this foreland depression, source rock maturation, which is likely controlled mainly by burial history, also influenced by the presence of fault thrusting and salt-bearing formations.  相似文献   

6.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

7.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

8.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

9.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

10.
Fluid migration patterns are important for understanding gas hydrate and hydrocarbon systems. However, conducting experiments on or below the seafloor is difficult because crustal fluid flow rates are usually very slow, so long term observations are needed. Temperature can be used as a good tracer for studying fluid flows. Temperatures derived from bottom-simulating reflectors (BSRs) might help to understand fluid migration patterns in shallow marine sediments. In this study, we studied 2D fluid flow patterns in two potential gas hydrate provinces offshore southwestern Taiwan: the Yung-An Ridge in the active margin and Formosa Ridge in the passive margin. We used 2D bathymetry, average seafloor temperatures and regional geothermal gradients measured by thermal probes, as constraints to construct 2D theoretical conductive temperature fields using finite element methods. We then compared the BSR-based temperature with the theoretical conductive temperature field. The results show a temperature discrepancy attributed to advective heat transfer due to fluid migration. For the Yung-An Ridge, the BSR-based temperatures are about 2 °C higher than the model: Especially in (1) near a fault zone, (2) under the eastern flank where there are strong seismic reflectors in a pseudo-3D seismic dataset, and (3) near a fissure zone. For the Formosa Ridge, our results showed a distinct decrease in temperatures around the southern peak of the ridge, where an active gas plume was found. BSR-based temperatures predict on average 2 °C lower than the model. At these two sites, the shallow temperature fields are strongly affected by 2D bathymetry. However, new insights regarding fluid flow patterns can be obtained using this model approach.  相似文献   

11.
《Sedimentary Geology》2001,139(3-4):285-317
Petrographic and geochemical data from five localities in the Ziz Valley of Morocco indicate that Jurassic limestones have undergone early diagenesis that varied with location from shelf to basinal settings, burial diagenesis that was most pronounced in basinal settings, and late diagenesis caused by compression and uplift of the High Atlas Mountains.Marine cements occur at all five localities from shelf-to-basin center, although cement types vary from peloidal microcrystalline cements updip on the shelf-to-equant calcite in basinal settings. Presence of moldic grains and/or Mg-poor, Fe-poor blocky cements suggest that meteoric waters influenced early diagenesis at all shelf localities and on an upturned fault block in the basinal region, leaving only one locality unaffected by early meteoric processes. 87Sr/86Sr ratios of 0.70810–0.70895 (greater than 87Sr/86Sr of coeval limestones), Mg contents that decrease upward from 47.5 to 43.0 mol% MgCO3, presence of dolomitized marine cements, and dolomite cements that postdate marine cements but predate meteoric-to-burial cements suggest that dolomitization and dolomite cementation at two shelf localities took place in mixed meteoric and marine waters early in diagenesis. However, poorer preservation of depositional fabrics, lower δ18O values, and larger and more anhedral crystals suggest that dolostones downdip underwent later modification during burial, whereas those updip did not.Compaction during diagenesis generated numerous concavo–convex and sutured intergranular contacts at updip shelf, downdip shelf, and basinal localities where earlier meteoric cementation was not extensive. Compaction was insignificant in more extensively cemented mid-shelf settings. High Sr (1200–3800 ppm) and Fe (1000–2300 ppm) contents in brachiopod grains suggest that LMC components underwent some modification during burial in basinal settings in Sr-rich reducing waters. Fe contents of late intergranular cements increase from 2000 ppm at the basin's edge to as much as 6000 ppm in the basin's center. Bedding-parallel stylolites occur at all localities.The most negative δ18O values of sparry dolomites near the Tizi n'Firest fault (−6.2‰ vs. PDB) imply diagenetic temperatures of 65–85°C assuming water δ18O values of 0.0–2.0‰ vs. SMOW. Those temperatures are much less than previous estimates of burial temperatures in the High Atlas basin. An isotopic gradient extrapolating to roughly 5‰/km in diagenetically modified dolostones likewise suggests a geothermal gradient less than gradients previously proposed for at least parts of the area.Comparison of morphologies of transverse stylolites, which are found at all localities, with morphologies of bedding parallel stylolites suggests that transverse stylolites formed due to compression during late diagenesis. Uplift accompanying that compression allowed influx of low-Mg waters that, along with other factors, caused calcitization of dolomites. The Fe concentration of calcite that fills late fractures increases from less than 2000 ppm at the basin center to values in excess of 3000 ppm at the basin edge, opposite trends in earlier cements and reflecting uplift of the High Atlas Mountains and resultant changes in patterns of groundwater flow.  相似文献   

12.
The Bajgan Complex, one of the basement constituents of the arc massif in Iranian Makran forms a rugged, deeply incised terrain. The complex consists of pelitic schists with minor psammitic and basic schists, calc silicate rocks, amphibolites, marbles, metavolcanosediments, mafic and felsic intrusives as well as ultramafic rocks. Metapelitic rocks show an amphibolite facies regional metamorphism and contain garnet, biotite, white mica, quartz, albite ± rutile ± apatite. Thermobarometry of garnet schist yields pressure of more than 9 kbar and temperatures between 560 and 675 °C. The geothermal gradient obtained for the peak of regional metamorphism is 19 °C/km, corresponding to a depth of ca. 31 km. Replacement of garnet by chlorite and epidote suggest greenschist facies metamorphism due to a decrease in temperature and pressure through exhumation and retrograde metamorphism (370–450 °C and 3–6 kbar). The metapelitic rocks followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal decline following tectonic thickening. The formation of medium-pressure metamorphic rocks is related to presence of active subduction of the Neotethys Oceanic lithosphere beneath Eurasia in the Makran.  相似文献   

13.
The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1–95 ± 52 ppm in olivine, 1 ± 0.5–61 ± 9 ppm in orthopyroxene, and 7 ± 2–71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time.  相似文献   

14.
《Gondwana Research》2014,26(4):1357-1368
Oceanic Anoxic Event 2 (OAE 2) during the Cenomanian–Turonian (C/T) transition caused stepwise marine extinctions. Using organic compounds, stable carbon and oxygen isotopes, and foraminifera from three depth-transect sections in northern Spain, this study revealed repeated anoxic/euxinic events coinciding with warming and stepwise extinctions of planktonic and/or benthic foraminifera within intermediate to surface waters in the proto-North Atlantic during the C/T transition. Those short-duration euxinic events occurred four times: at 93.95 Ma, marked by the extinction of Rotalipora greenhornensis; at 93.90 Ma, marked by the extinction of Rotalipora cushmani; at the mid-time maximum of the plateau of the δ13C of carbonates (93.70 Ma); and at the time of the C/T boundary (93.55 Ma). Furthermore, the main benthic foraminiferal extinctions occurred during the first and second euxinic events in the upper slope, during the second and third euxinic events in the outer to middle shelf, and during the third and fourth events in the middle shelf. The main euxinic events in each section also showed a progression to the shallow shelf. The main anoxia–extinction events occurred in the upper slope and outer shelf then moved to the middle shelf. The shallowest section had relatively weak anoxia and a proportionally low extinction rate. These new findings indicate that foraminiferal extinctions started from the intermediate water and the continental slope and then moved to the continental shelf. This was the result of the repeated progression of euxinic–anoxic water from the upper slope to the middle shelf on the eastern continental margin of the proto-North Atlantic four times during a 400 kyr period, to the end of the Cenomanian.  相似文献   

15.
We present a gravity model of the crustal structure in southern Mexico based on interpretation of a detailed marine gravity profile perpendicularly across the Middle America Trench offshore from Acapulco, and a regional gravity transect extending into continental Mexico across the Sierra Madre del Sur, the central sector of the Trans-Mexican Volcanic Belt, the Sierra Madre Oriental, the Coastal Plain, and into the Gulf of Mexico. The elastic thickness of the Cocos lithospheric plate was found to be 30 km. In agreement with a previous seismic refraction study, no major differences in crustal structure were observed on both sides of the O’Gorman Fracture Zone. The gravity high seaward of the trench is interpreted as due to the incipient flexure and crustal thinning. The gravity low at the axis of the trench is explained by the increase in water depth and the existence of low-density accreted or continental-derived sediments (2.25 and 2.40 g/cm3). A gravity high of 50 mGal extending about 100 km landward is interpreted as caused by local shoaling of the Moho. The crust attains a thickness of 42 km under the Trans-Mexican Volcanic Belt but thins beneath the Coastal Plain and the continental slope of the Gulf of Mexico. Gravity highs around the Sierra de Tamaulipas are interpreted in terms of relief of the lower–upper crustal interface, implying a shallow basement.  相似文献   

16.
The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes than those from other seismic reflectors. We estimate the average geothermal gradient of ∼40°C/km and heat flow varying from 23 to 62 mW/m2 in the study area utilizing the BSR’s observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the nature of BSR.  相似文献   

17.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

18.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

19.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

20.
The Hengshan massif is an exhumed, mid-crustal, plutonic–metamorphic dome formed during Cretaceous crustal extension in the Jiangnan orogenic belt, central South China. Multiple thermochronometers (mica 40Ar/39Ar, apatite fission track and zircon (U–Th)/He) are applied to its footwall along a slip-parallel transect to quantify its thermal history and cooling rate, and the slip magnitude, rate, initial geometry and kinematic evolution of the low-angle Hengshan detachment fault. Our thermochronological data, in conjunction with previous ages, indicate that (1) footwall rocks cooled from ~ 700 °C to ~ 60 °C in less than 60 Myr (136–80 Ma) at variable rates ranging from ~ 50 °C/Myr to ~ 13 °C/Myr, (2) the Hengshan detachment fault accommodated ~ 8–12 km of total slip at variable slip rates from 0.14 to 1 mm/yr during tectonic exhumation, (3) the footwall has been tilted ~ 26°–50° to the east since slip began, indicating that the low-angle Hengshan detachment fault initiated at a steep dip and was passively rotated to a more gentle orientation during subsequent normal slip. This study provides compelling evidence supporting that the low-angle detachment fault in the extensional dome can be generated by the reactivation and passive rotation of an initially steep reverse fault during normal slip. In addition, our thermochronological data constrain the time of extension in the Hengshan dome between 136 and 80 Ma, which implies that the back-arc extension within South China associated with the rollback of the Paleo-Pacific slab might have lasted until at least 80 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号