首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

2.
The Qiangma gold deposit is hosted in the > 1.9 Ga Taihua Supergroup metamorphic rocks in the Xiaoqinling terrane, Qinling Orogen, on the southern margin of the North China Craton. The mineralization can be divided as follows: quartz-pyrite veins early, quartz-polymetallic sulfide veinlets middle, and carbonate-quartz veinlets late stages, with gold being mainly introduced in the middle stage. Three types of fluid inclusions were identified based on petrography and laser Raman spectroscopy, i.e., pure carbonic, carbonic-aqueous (CO2–H2O) and aqueous inclusions.The early-stage quartz contains pure carbonic and CO2–H2O inclusions with salinities up to 12.7 wt.% NaCl equiv., bulk densities of 0.67 to 0.86 g/cm3, and homogenization temperatures of 280−365 °C. The early-stage is related to H2O–CO2 ± N2 ± CH4 fluids with isotopic signatures consistent with a metamorphic origin (δ18Owater = 3.1 to 5.2‰, δD =  37 to − 73‰). The middle-stage quartz contains all three types of fluid inclusions, of which the CO2–H2O and aqueous inclusions yield homogenization temperatures of 249−346 °C and 230−345 °C, respectively. The CO2–H2O inclusions have salinities up to 10.9 wt.% NaCl equiv. and bulk densities of 0.70 to 0.98 g/cm3, with vapor bubbles composed of CO2 and N2. The isotopic ratios (δ18Owater = 2.2 to 3.6‰, δD =  47 to − 79‰) suggest that the middle-stage fluids were mixed by metamorphic and meteoric fluids. In the late-stage quartz only the aqueous inclusions are observed, which have low salinities (0.9−9.9 wt.% NaCl equiv.) and low homogenization temperatures (145−223 °C). The isotopic composition (δ18Owater =  1.9 to 0.5‰, δD =  55 to − 66‰) indicates the late-stage fluids were mainly meteoric water.Trapping pressures estimated from CO2–H2O inclusions are 100−285 MPa for the middle stage, suggesting that gold mineralization mainly occurred at depths of 10 km. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, and fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Qiangma gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic−Early Cretaceous continental collision between the North China and Yangtze cratons.  相似文献   

3.
The Ulu Sokor gold deposit is one of the most famous and largest gold deposits in Malaysia and is located in the Central Gold Belt. This deposit consists of three major orebodies that are related to NS- and NE-striking fractures within fault zones in Permian-Triassic meta-sedimentary and volcanic rocks of the East Malaya Block. The faulting events represent different episodes that are related to each orebody and are correlated well with the mineralogy and paragenesis. The gold mineralization consists of quartz-dominant vein systems with sulfides and carbonates. The hydrothermal alteration and mineralization occurred during three stages that were characterized by (I) silicification and brecciation; (II) carbonatization, sericitization, and chloritization; and (III) quartz–carbonate veins.Fluid inclusions in the hydrothermal quartz and calcite of the three stages were studied. The primary CO2–CH4–H2O–NaCl fluid inclusions in stage I are mostly related to gold mineralization and display homogenization temperatures of 269–389 °C, salinities of 2.77–11.89 wt.% NaCl equivalent, variable CO2 contents (typically 5–29 mol%), and up to 15 mol% CH4. In stage II, gold was deposited at 235–398 °C from a CO2 ± CH4–H2O–NaCl fluid with a salinity of 0.83–9.28 wt.% NaCl equivalent, variable CO2 contents (typically 5–63 mol%), and up to 4 mol% CH4. The δ18OH2O and δD values of the ore-forming fluids from the stage II quartz veins are 4.5 to 4.8‰ and − 44 to − 42‰, respectively, and indicate a metamorphic–hydrothermal origin. Oxygen fugacities calculated for the entire range of T-P-XCO2 conditions yielded log fO2 values between − 28.95 and − 36.73 for stage I and between − 28.32 and − 39.18 for stage II. These values indicate reduced conditions for these fluids, which are consistent with the mineral paragenesis, fluid inclusion compositions, and isotope values.The presence of daughter mineral-bearing aqueous inclusions is interpreted to be a magmatic signature of stage IIIa. Combined with the oxygen and hydrogen isotopic compositions (δ18OH2O = 6.8 to 11.9‰, δD =  77 to − 62‰), these inclusions indicate that the initial fluid was likely derived from a magmatic source. In stage IIIb, the gold was deposited at 263° to 347 °C from a CO2–CH4–H2O–NaCl fluid with a salinity of 5.33 to 11.05 wt.% NaCl equivalent, variable CO2 contents (typically 9–15 mol%), and little CH4. The oxygen and hydrogen isotopic compositions of this fluid (δ18OH2O = 8.1 to 8.8‰, δD =  44 to − 32‰) indicate that it was mainly derived from a metamorphic–hydrothermal source. The CO2–H2O ± CH4–NaCl fluids that were responsible for gold deposition in the stage IIIc veins had a wide range of temperatures (214–483 °C), salinities of 1.02 to 21.34 wt.% NaCl equivalent, variable CO2 contents (typically 4–53 mol%), and up to 7 mol% CH4. The oxygen and hydrogen isotopic compositions (δ18OH2O = 8.5 to 9.8‰, δD =  70 to − 58‰) were probably acquired at the site of deposition by mixing of the metamorphic–hydrothermal fluid with deep-seated magmatic water and then evolved by degassing at the site of deposition during mineralization. The log fO2 values from − 28.26 to − 35.51 also indicate reduced conditions for this fluid in stage IIIc. Moreover, this fluid had a near-neutral pH and δ34S values of H2S of − 2.32 to 0.83‰, which may reflect the derivation of sulfur from the subducted oceanic lithospheric materials.The three orebodies represent different gold transportation and precipitation models, and the conditions of ore formation are related to distinct events of hydrothermal alteration and gold mineralization. The gold mineralization of the Ulu Sokor deposit occurred in response to complex and concurrent processes involving fluid immiscibility, fluid–rock reactions, and fluid mixing. However, fluid immiscibility was the most important mechanism for gold deposition and occurred in these orebodies, which have corresponding fluid properties, structural controls, geologic characteristics, tectonic settings, and origins of the ore-forming matter. These characteristics of the Ulu Sokor deposit are consistent with its classification as an orogenic gold deposit, while some of the veins are genetically related to intrusions.  相似文献   

4.
Located along the southern part of the Yarlung Zangbo suture zone in southern Tibet, Bangbu is one of the largest gold deposits in Tibet. Auriferous sulfide-bearing quartz veins are controlled by second- or third-order brittle fractures associated with the regional Qusong–Cuogu–Zhemulang brittle-ductile shear zone. Fluid inclusion studies show that the auriferous quartz contains aqueous inclusions, two-phase and three-phase CO2-bearing inclusions, and pure gaseous hydrocarbon inclusions. The CO2-bearing inclusions have salinities of 2.2–9.5% NaCleq, and homogenization temperatures (Th) of 167–336 °C. The δD, δ18O, and δ13C compositions of the Bangbu ore-forming fluids are − 105.5 to − 44.4‰, 4.7 to 9.0‰ and − 5.1 to − 2.2‰, respectively, indicating that the ore-forming fluid is mainly of metamorphic origin, with also a mantle-derived contribution. The 3He/4He ratio of the ore-forming fluids is 0.174 to 1.010 Ra, and 40Ar/36Ar ranges from 311.9 to 1724.9. Calculations indicate that the percentage of mantle-derived He in fluid inclusions from Bangbu is 2.7–16.7%. These geochemical features are similar to those of most orogenic gold deposits. Dating by 40Ar/39Ar of hydrothermal sericite collected from auriferous quartz veins at Bangbu yielded a plateau age of 44.8 ± 1.0 Ma, with normal and inverse isochronal ages of 43.6 ± 3.2 Ma and 44 ± 3 Ma, respectively. This indicates that the gold mineralization was contemporaneous with the main collisional stage between India and Eurasia along the Yarlung Zangbo suture, which resulted in the development of near-vertical lithospheric shear zones. A deep metamorphic fluid was channeled upward along the shear zone, mixing with a mantle fluid. The mixed fluids migrated into the brittle structures along the shear zone and precipitated gold, sulfides, and quartz because of declining temperature and pressure or fluid immiscibility. The Bangbu is a large-scale Cenozoic syn-collisional orogenic gold deposit  相似文献   

5.
The Changjiang uranium ore field, which contains >10,000 tonnes of recoverable U with a grade of 0.1–0.5%, is hosted by Triassic two-mica and Jurassic biotite granites, and is one of the most important uranium ore fields in South China. The minerals associated with alteration and mineralization can be divided into two stages, namely syn-ore and post-ore. The syn-ore minerals are primarily quartz, pitchblende, hematite, hydromica, chlorite, fluorite, and pyrite; the post-ore minerals include quartz, calcite, fluorite, pyrite, and hematite. The fluid inclusions of the early syn-ore stage characteristically contain O2, and those of the late syn-ore and post-ore stage contain H2 and CH4. The fluid inclusions in quartz of the syn-ore stage include H2O, H2O–CO2, and CO2 types, and they occur in clusters or along trails. Homogenization temperatures (Th) for the H2O–CO2 and two-phase H2O inclusions range from 106 °C to >350 °C and cluster in two distinct groups for each type; salinities are lower than 10 wt% NaCl equiv. The ore-forming fluids underwent CO2 effervescence or phase separation at ∼250 °C under a pressure of 1000–1100 bar. The U/Th values of the altered granites are lowest close to the ore, increase outwards, but subsequently decrease close to unaltered granites. From the unaltered granites to the ore, the lowest Fe2O3/FeO values become lower and the highest values higher. The REE patterns of the altered granites and the ores are similar to each other. The U contents of the ores show a positive correlation with total REE contents but a negative correlation with LREE/HREE ratios, indicating the pitchblende is REE-bearing and selectively HREE-rich. The δEu values of the ore show a positive correlation with U contents, indicating the early syn-ore fluids were oxidizing. The δCe values show a negative correlation, indicating the later mineralization environment became reducing. The water–rock interactions of the early syn-ore stage resulted in oxidization of altered granites and reduction of the ore-forming fluids, and it was this reduction that led to the uranium mineralization. During alteration in the early syn-ore stage, the oxidizing fluids leached uranium from granites close to faults, and Fe2O3/FeO ratios increased in the alteration zones. The late syn-ore and post-ore alteration decreased the Fe2O3/FeO ratios in the alteration zones. The δ18OW–SMOW values of the ore-forming fluids range from −1.8‰ to 5.4‰, and the δDW–SMOW values range from −104.4‰ to −51.6‰, suggesting meteoric water. The meteoric water underwent at least two stages of water–rock interaction: the first caused the fluids to become uranium-bearing, and the second stage, which was primarily associated with ore-bearing faults, led to uranium deposition as pitchblende, accompanied by CO2 effervescence.  相似文献   

6.
The junction of the southeastern Guizhou, the southwestern Hunan, and the northern Guangxi regions is located within the southwestern Jiangnan orogen and forms a NE-trending ∼250 km gold belt containing more than 100 gold deposits and occurrences. The Pingqiu gold deposit is one of the numerous lode gold deposits in the southeastern Guizhou district. Gold mineralization is hosted in Neoproterozoic lower greenschist facies metamorphic rocks and controlled by fold-related structures. Vein types present at Pingqiu include bedding-parallel and discordant types, with saddle-reefs and their down limb extensions dominating but with lesser discordant types. The major sulfide minerals are arsenopyrite and pyrite, with minor sphalerite, galena, chalcopyrite, and rare pyrrhotite, marcasite, and tetrahedrite. Much of the gold is μm- to mm-sized grains, and occurs as fracture-controlled isolated grains or filaments in quartz, galena, sphalerite, pyrite, and wallrock.Three types of fluid inclusions are distinguished in hydrothermal minerals. Type 1 aqueous inclusions have homogenization temperatures of 171–396 °C and salinities of 1.4–9.8 wt% NaCl equiv. Type 2 aqueous-carbonic inclusions yield final homogenization temperatures of 187–350 °C, with salinities of 0.2–7.7 wt% NaCl equiv. Type 3 inclusions are carbonic inclusions with variable relative content of CO2 and CH4, and minor amounts of N2 and H2O. The close association of CO2-rich inclusions and H2O-rich inclusions in groups and along the same trail suggests the presence of fluid immiscibility. The calculated δ18OH2O values range from 4.3‰ to 8.3‰ and δDH2O values of fluid inclusions vary from −55.8‰ to −46.9‰. A metamorphic origin is preferred on the basis of geological background and analogies with other similar deposit types.Two ore-related sericite samples yield well-defined 40Ar/39Ar plateau ages of 425.7 ± 1.7 Ma and 425.2 ± 1.3 Ma, respectively. These data overlap the duration of the Caledonian gold mineralization along the Jiangnan orogen, and suggest that gold mineralization was post-peak regional metamorphism and occurred during the later stages of the Caledonian orogeny.Overall, the Pingqiu gold deposit displays many of the principal characteristics of the Bendigo gold mines in the western Lachlan Orogen (SE Australia) and the Dufferin gold deposit in the Meguma Terrane (Nova Scotia, Canada) but also some important differences, which may lead to the disparity in gold endowment. However, the structural make-up at deposit scale, and the shallow mining depth at present indicate that the Pingqiu gold deposit may have considerable gold potential at depth.  相似文献   

7.
The Maevatanana gold deposit in Madagascar is hosted by Archean metamorphic rocks in quartz–sulfide veins that are structurally controlled by NNW–SSE trending shear zones. Fluid inclusion data show that the trapping conditions in quartz range from 0.87 to 2.58 kbar at temperatures of 269–362 °C. Laser Raman spectroscopy confirms that these inclusions consist of CO2, SO2, and H2O. The δ34S values of the pyrites range from 1.7‰ to 3.6‰, with an average of 2.25‰, supporting a magmatic origin. Noble gases (He, Ne, Ar, Ke, Xe) are chemically inert, thus will not be involved in chemical reactions during geological processes. Also due to the low concentration of He in the atmosphere and the low solubility of He in aqueous fluids, the atmosphere-derived He is unlikely to significantly affect He abundances and isotopic ratios of crustal fluids, ensures that He production should have the typical crust 3He/4He ratios. The 3He/4He ratios of fluid inclusions in pyrite from the deposit range from 0.06 to 0.12 Ra, while the 40Ar/36Ar ratios range from 6631 to 11441. We infer that the ore-forming fluids could have been exsolved from a granitic magma. The oxygen and hydrogen isotope compositions of the ore-forming fluids (1.5‰  δ18OH2O  7.8‰; –72‰  δD  –117‰) indicate they were derived from a granitic magma. Four pyrite samples from the gold deposit yield a precise Re–Os isochron age of 534 ± 13 Ma. Given that the post-collisional granites in northern and central Madagascar were derived by melting of sub-continental lithospheric mantle and formed between 537 and 522 Ma, we can state that the gold metallogenesis was coeval with the crystallization age of these parental magmas. These data could be accounted for the formation of the Maevatanana gold deposit. First, the shear zones hosting the deposit formed around 2.5 Ga, when the Madagascan micro-continental blocks collided with other continental blocks, triggering large-scale tectono-magmatic activity and forming NNW–SSE trending shear zones. The gold mineralization at Maevatanana is coeval with the crystallization age of the Cambrian post-collisional A-type granitoid plutons in northern and central Madagascar, implying that this deposit is associated with extensional collapse of the East African Orogen. This extension in turn induced asthenospheric upwelling, melting of sub-continental lithospheric mantle. These magmas underplated the lower crust, generating voluminous granitic magmas by partial melting of the lower crust. The mixing magma during tectono-thermal reactivation of the East African Orogen produced large volumes of volatiles that extracted gold from the granitic magma and produced Au–S complexes (e.g., Au(HSO3)2−). The shear zones, which were then placed under extensional collapse of the East African Orogen in the Cambrian, formed favorable pathways for the magmatic ore-forming fluids. These fluids then precipitated gold-sulfides that form the Maevatanana gold deposit.  相似文献   

8.
Orogenic gold mineralization in the Amalia greenstone belt is hosted by oxide facies banded iron-formation (BIF). Hydrothermal alteration of the BIF layers is characterized by chloritization, carbonatization, hematization and pyritization, and quartz-carbonate veins that cut across the layers. The alteration mineral assemblages consist of ankerite-ferroan dolomite minerals, siderite, chlorite, hematite, pyrite and subordinate amounts of arsenopyrite and chalcopyrite. Information on the physico-chemical properties of the ore-forming fluids and ambient conditions that promoted gold mineralization at Amalia were deduced from sulfur, oxygen and carbon isotopic ratios, and fluid inclusions from quartz-carbonate samples associated with the gold mineralization.Microthermometric and laser Raman analyses indicated that the ore-forming fluid was composed of low salinity H2O-CO2 composition (~3 wt% NaCl equiv.). The combination of microthermometric data and arsenopyrite-pyrite geothermometry suggest that quartz-carbonate vein formation, gold mineralization and associated alteration of the proximal BIF wall rock occurred at temperature-pressure conditions of 300 ± 30 °C and ∼2 kbar. Thermodynamic calculations at 300 °C suggest an increase in fO2 (10−32–10−30 bars) and corresponding decrease in total sulfur concentration (0.002–0.001 m) that overlapped the pyrite-hematite-magnetite boundary during gold mineralization. Although hematite in the alteration assemblage indicate oxidizing conditions at the deposit site, the calculated low fO2 values are consistent with previously determined high Fe/Fe + Mg ratios (>0.7) in associated chlorite, absence of sulfates and restricted positive δ34S values in associated pyrite. Based on the fluid composition, metal association and physico-chemical conditions reported in the current study, it is confirmed that gold in the Amalia fluid was transported as reduced bisulfide complexes (e.g., Au(HS)2). At Amalia, gold deposition was most likely a combined effect of increase in fO2 corresponding to the magnetite-hematite buffer, and reduction in total sulfur contents due to sulfide precipitation during progressive fluid-rock interaction.The epigenetic features coupled with the isotopic compositions of the ore-forming fluid (δ34SΣS = +1.8 to +2.3‰, δ18OH2O = +6.6 to +7.9‰, and δ13CΣC = −6.0 to −7.7‰ at 300–330 °C) are consistent with an externally deep-sourced fluid of igneous signature or/and prograde metamorphism of mantle-derived rocks.  相似文献   

9.
Polymetallic vein-type Zn-Pb deposits are located in the Xiangxi–Qiandong zinc-lead metallogenic belt (XQMB) of the northwestern margin of the Jiangnan Orogen, South China. Ores are mainly found in fault-bounded quartz veins hosted in the upper part of the Banxi Group that consists of low-grade metamorphic sandstone, siltstone with minor tuff interbeds. The Zn-Pb deposits primarily contain sphalerite, galena, chalcopyrite and pyrite, accompanied by quartz and minor calcite. Zinc, lead, copper, indium and gallium are enriched in these ores. Investigation of the ore fluid reveals low temperature (87–262 °C) with scattered salinity (range from 2.73 to 26.64 wt% NaCleqv.). Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz indicate mixing of magmatic hydrothermal fluid and meteoric water (δ18OH2O SMOW = 0.2‰ to 4.2‰; δDH2O SMOW = −126‰ to −80‰). Carbon and oxygen isotopic composition of carbonate samples indicate the magmatic hydrothermal origin of CO32− or CO2 in ore-forming fluid (δ13CPDB = −6.9‰ to −5.7‰, δ18OSMOW = 11.3‰ to 12.7‰). Sulfur and lead isotopic compositions (δ34SVCDT = 8.8–14.2‰ and 206Pb/204Pb = 17.156–17.209, 207Pb/204Pb = 15.532–15.508, 208Pb/204Pb = 37.282–37.546) demonstrate that sulfur sources were relatively uniform, and low radiogenic lead isotopic compositions indicate that ore metals were derived from a relatively unradiogenic source, probably by mixing of mantle with crust. Therefore, polymetallic vein-type Zn-Pb mineralization in this area probably arose from a magmatic-related hydrothermal system, and the deposition of sulfides occurred in response to cooling and boiling of magmatic hydrothermal fluids (high salinity, high δ18OH2O and δDH2O and metal-bearing), and is mainly the result of emplacement into open space and mixing with meteoric water (low salinity, low δ18OH2O and δDH2O). This study provides direct evidence that magmatism was involved in the ore-forming processes of the low temperature metallogenic district, South China, and it raises awareness about the presence of polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen and their potential as a source of zinc, copper, indium and gallium.  相似文献   

10.
Carbon (δ13CPDB) and oxygen (δ18OSMOW) isotopic compositions of auriferous quartz-carbonate veins (QCVs) of gold deposits from Sangli, Kabuliyatkatti, Nagavi, Nabapur and Mysore mining areas developed on the Central Lode system of the Gadag Gold Field (GGF) in the Neoarchaean Gadag schist belt of the Dharwar Craton, southern India have been examined for the first time to understand the origin of the mineralising fluids. In majority of the samples (46 out of 49), δ13Cpdb of carbonates of the QCVs fall in the range from − 2.2‰ to − 9.7‰ and the δ18O values range from 12.0‰ to 30.5‰ SMOW. The calculated fluid δ13C C compositions for these deposits range from − 2.1‰ to − 9.6‰ and δ18OH2O from 6.8‰ to 25.9‰, respectively. Carbonate δ13C and fluid δ13C C compositions of the carbonates of the QCVs of the GGF are not only distinct from the carbon isotope range of marine carbonates or meta-sedimentary carbonates of the Chitradurga schist belt, but are consistent with C-isotope values of magmatic (− 5 ± 3‰, Burrows et al., 1986) and/or mantle (− 6 ± 2‰, Ohmoto, 1986) carbonates. As dissolution/decarbonation reactions during metamorphism of pre-existing carbonate/carbonated rocks produce CO2 with δ13C values similar to or more enriched than parent rock, the carbonate or fluid δ13C ratios of the QCVs (which fall in the compositional range of mantle/magmatic derived CO2 or carbonates) obtained in this work cannot be the result of metamorphism. The present study corroborates our previous reports from Ajjanahalli and G.R. Halli gold deposits (Sarangi et al., 2012) occurring in the vicinity of the southern extension of the same crustal scale shear zone on which all the GGF deposits are located.The age of gold mineralisation in this area has been reported to be 2522 ± 6 Ma by Sarma et al., 2011. Chardon et al. (2011) have proposed large-scale remobilization of the older gneissic basement, as well as, emplacement of juvenile granites between 2559 Ma and 2507 Ma, close to the crustal scale shear zone along the eastern margin of the Chitradurga schist belt. Based on these observations and our isotope studies, it is proposed that gold mineralising fluids were derived from mantle/juvenile magmatic melts and were channelled through crustal scale shear zones to give rise to the gold deposits in the GGF.  相似文献   

11.
The Aerhada Pb-Zn-Ag deposit is located in the western segment of the Great Hinggan Range Ag-Pb-Zn-Cu-Mo-Au-Fe metallogenic belt in NE China. Orebodies occur mainly as vein type and are hosted by sandstone and siliceous slate. Three stages of primary mineralization, including an early arsenopyrite-pyrite-quartz, a middle polymetallic and silver sulfides-quartz and a late sphalerite-pyrite-calcite-fluorite are recognized. Four types of fluid inclusions have been identified in the ore-bearing quartz and fluorite veins, i.e., liquid-rich, gas-rich, three-phase CO2 aqueous inclusions, and pure gas or liquid aqueous inclusions. Microthermometric studies on fluid inclusions reveal that homogenization temperatures from early to late stages range from 253° to 430 °C, 195° to 394 °C and 133° to 207 °C, respectively. Fluid salinities range from 2.9 to 14.0 wt.% NaCl equiv. The vapor composition of the ore fluid is dominated by H2O, CO2 and CH4, with minor proportions of N2. The fluid δ18OH2O and δDH2O values vary from +1.6 to +9.3‰ and −122 to −56‰, respectively, and reflect a magmatic fluid and a meteoric fluid dominant hydrothermal system for the early and late stages of mineralization, respectively. The calculated δ34SH2S values of hydrothermal fluids in equilibrium with sulfides range from +5.2 to +7.1‰, suggesting a mixed source for sulfur, i.e., the local magmatic and sedimentary rocks. The Pb isotope compositions of sulfides are similar to those of the local magmatic and sedimentary rocks, implying that lead and possibly silver relate to these sources. The noble gas isotope compositions of fluid inclusions hosted in ore minerals suggest that the ore-forming fluids were dominantly derived from a deep mantle source. Fluid mixing and dilution are inferred as the dominant mechanisms for ore deposition. The Aerhada Pb-Zn-Ag deposit can be classified as a medium to low temperature hydrothermal vein type deposit.  相似文献   

12.
The Yinjiagou Mo–Cu–pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit’s mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz–molybdenite, quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite, and calcite–galena–sphalerite in the sulfide episode, and chalcedony–limonite in the supergene episode. Re–Os and 40Ar–39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O–CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4–44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite veins is 382–416 °C, and the salinity is 3.6–40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6–42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite stockworks is in a range of 321–411 °C, and the salinity is 6.3–16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–sericite–pyrite is in a range of 326–419 °C, and the salinity is 4.7–49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O–NaCl–KCl ± CO2 system. The δ18OH2O values of ore-forming hydrothermal fluids are 4.0–8.6‰, and the δDV-SMOW values are between −64‰ and −52‰, indicating that the ore-forming fluids were primarily magmatic. The δ34SV-CDT values of sulfides range between −0.2‰ and 6.3‰ with a mean of 1.6‰, sharing similar features with deeply sourced sulfur, implying that the sulfur mainly came from the lower crust composed of poorly differentiated igneous materials, but part of the heavy sulfur came from the Guandaokou Group dolostone. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of sulfides are in the range of 17.331–18.043, 15.444–15.575, and 37.783–38.236, respectively, which is generally consistent with the Pb isotopic signature of the Yinjiagou intrusion, suggesting that the Pb chiefly originated from the felsic–intermediate intrusive rocks in the mine area, with a small amount of lead from strata. The Yinjiagou deposit is a porphyry–skarn deposit formed during the Mesozoic transition of a tectonic regime that is EW-trending to NNE-trending, and the multiepisode boiling of ore-forming fluids was the primary mechanism for mineral deposition.  相似文献   

13.
The Hetaoping skarn type Pb–Zn deposit is located in the Baoshan–Narong–Dongzhi block metallogenic belt (BND belt), a belt between the Tengchong terrane and the Lanping basin. The deposit is hosted by marble of the upper Cambrian Hetaoping Formation and there are no outcrops of plutonic rocks present. This deposit is one of two large Pb–Zn deposits recently discovered in the BND belt. The Hetaoping deposit is a high Mn skarn. Four types of fluid inclusions were recognized in quartz from the deposit: vapor-rich inclusions (Type I), liquid-rich inclusions (Type II), pure vapor inclusions (Type III), and pure fluid inclusions (Type IV). The coexistence of Type I and Type III inclusions in Stage I (pre-ore stage) and Stage II (main ore stage) shows evidence of fluid boiling. Quartz-hosted fluid inclusions (Stage I and Stage II) display high homogenization temperatures and salinities (134–315 °C; 3.7–18.6 wt% NaCl equivalent) but calcite-hosted fluid inclusions in Stage III (post-ore stage) record lower homogenization temperatures and salinities (85–214 °C; 0.5–5.4 wt% NaCl equivalent). These data suggest a possible mixing between primary magmatic water and meteoric water. Based on chromatography data, the fluid inclusions in quartz contain abundant CO2 and O2 and subordinate CO, CH4 and C2H2 + C2H4, suggesting an oxidizing environment. Based on their Na/K and Cl/SO4 ratios, fluids contained in fluid inclusions are similar to volcanic spring waters. The low Na/K ratios (0.40–1.34) of the ore-forming fluids may have resulted from interaction with a deep alkaline intermediate-acid intrusion. Hydrogen and oxygen isotope determinations on quartz from different ore stages show low δ18O and δD values relative to VSMOW (−4.3‰ to 2.3‰; −109‰ to −91‰), indicating that the ore-forming fluids were diluted by external fluid sources as the skarn system cooled. Overall, geological and geochemical interpretations suggest that the Hetaoping deposit is a distal manganese skarn Pb–Zn deposit related to concealed intrusions.  相似文献   

14.
The Baiyangping Cu–Ag polymetallic ore district is located in the northern part of the Lanping–Simao foreland fold belt, which lies between the Jinshajiang–Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4–19.9 wt.% NaCl equivalents, with two modes at approximately 5–10 and 16–21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10–38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21–196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from −7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological conditions of seawater sulfate reduction to sulfur. (4) The C–O isotopic analyses yield δ13C values from ca. zero to −10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.  相似文献   

15.
The Linghou deposit, located near Hangzhou City of Zhejiang Province, eastern China, is a medium-sized polymetallic sulfide deposit associated with granitic intrusion. This deposit is structurally and lithologically controlled and commonly characterized by ore veins or irregular ore lenses. In this deposit, two mineralization events were identified, of which the former produced the Cu–Au–Ag orebodies, while the latter formed Pb–Zn–Cu orebodies. Silicification and calc-silicate (skarn type), phyllic, and carbonate alternation are four principal types of hydrothermal alteration. The early Cu–Au–Ag and late Pb–Zn–Cu mineralizations are characterized by quartz ± sericite + pyrite + chalcopyrite + bornite ± Au–Ag minerals ± magnetite ± molybdenite and calcite + dolomite + sphalerite + pyrite + chalcopyrite + galena, respectively. Calcite clusters and calcite ± quartz vein are formed during the late hydrothermal stage.The NaCl–H2O–CO2 system fluid, coexisting with NaCl–H2O system fluid and showing the similar homogenization temperatures (385 °C and 356 °C, respectively) and different salinities (16.89–21.68 wt.% NaCl eqv. and 7.70–15.53 wt.% NaCl eqv.), suggests that fluid immiscibility occurred during the Cu–Au–Ag mineralization stage and might have given rise to the ore-metal precipitation. The ore-forming fluid of the Pb–Zn–Cu mineralization mainly belongs to the NaCl–H2O–CO2 system of high temperature (~ 401 °C) and mid-high salinity (10.79 wt.% NaCl eqv.).Fluids trapped in the quartz-chalcopyrite vein, Cu–Au–Ag ores, Pb–Zn–Cu ores and calcite clusters yielded δ18OH2O and δD values varying from 5.54‰ to 13.11‰ and from − 71.8‰ to − 105.1‰, respectively, indicating that magmatic fluids may have played an important role in two mineralization events. The δ13CPDB values of the calcite change from − 2.78‰ to − 4.63‰, indicating that the CO32  or CO2 in the ore-forming fluid of the Pb–Zn–Cu mineralization was mainly sourced from the magmatic system, although dissolution of minor marine carbonate may have also occurred during the ore-forming processes. The sulfide minerals have homogeneous lead isotopic compositions with 206Pb/204Pb ranging from 17.958 to 18.587, 207Pb/204Pb ranging from 15.549 to 15.701, and 208Pb/204Pb ranging from 37.976 to 39.052, indicating that metallic elements of the Linghou deposit came from a mixed source involving mantle and crustal components.Based on geological evidence, fluid inclusions, and H–O–C–S–Pb isotopic data, the Linghou polymetallic deposit is interpreted as a high-temperature, skarn-carbonate replacement type. Two types of mineralization are both related to the magmatic–hydrothermal system, with the Cu–Au–Ag mineralization having a close relationship with granodiorite.  相似文献   

16.
The Yindongpo gold deposit is located in the Weishancheng Au–Ag-dominated polymetallic ore belt in Tongbai Mountains, central China. The ore bodies are stratabound within carbonaceous quartz–sericite schists of the Neoproterozoic Waitoushan Group. The ore-forming process can be divided into three stages, represented by early barren quartz veins, middle polymetallic sulfide veinlets and late quartz–carbonate stockworks, with most ore minerals, such as pyrite, galena, native gold and electrum being formed in the middle stage. The average δ18Owater values changed from 9.7‰ in the early stage, through 4.9‰ in the middle stage, to − 5.9‰ in the late stage, with the δD values ranging between − 65‰ and − 84‰. The δ13CCO2 values of ore fluids are between − 3.7‰ and + 6.7‰, with an average of 1.1‰. The H–O–C isotope systematics indicate that the ore fluids forming the Yindongpo gold deposit were probably initially sourced from a process of metamorphic devolatilization, and with time gradually mixed with meteoric water. The δ34S values range from − 0.3‰ to + 5.2‰, with peaks ranging from + 1‰ to + 4‰. Fourteen sulfide samples yield 206Pb/204Pb values of 16.990–17.216, 207Pb/204Pb of 15.419–15.612 and208Pb/204Pb of 38.251–38.861. Both S and Pb isotope ratios are similar to those of the main lithologies of the Waitoushan Group, but differ from other lithologic units and granitic batholiths in the Tongbai area, which suggest that the ore metals and fluids originated from the Waitoushan Group. The available K–Ar and 40Ar/39Ar ages indicate that the ore-forming process mainly took place in the period of 176–140 Ma, during the transition from collisional compression to extension and after the closure of the oceanic seaway in the Qinling Orogen. The Yindongpo gold deposit is interpreted as a stratabound orogenic-style gold system formed during the transition phase from collisional compression to extension.The ore metals in the Waitoushan Group were extracted, transported and then accumulated in the carbonaceous sericite schist layer. The carbonaceous sericite schist layer, especially at the junction of collapsed anticline axis and fault structures, became the most favorable locus for the ore bodies.  相似文献   

17.
The Cangyuan Pb-Zn-Ag polymetallic deposit is located in the Baoshan Block, southern Sanjiang Orogen. The orebodies are hosted in low-grade metamorphic rocks and skarn in contact with Cenozoic granitic rocks. Studies on fluid inclusions (FIs) of the deposit indicate that the ore-forming fluids are CO2-bearing, NaCl-H2O. The initial fluids evolved from high temperatures (462–498 °C) and high salinities (54.5–58.4 wt% NaCl equiv) during the skarn stage into mesothermal (260–397 °C) and low salinities (1.2–9.5 wt% NaCl equiv) during the sulfide stage. The oxygen and hydrogen isotopic compositions (δ18OH2O: 2.7–8.8‰; δD: −82 to −120‰) suggest that the ore-forming fluids are mixture of magmatic fluids and meteoric water. Sulfur isotopic compositions of the sulfides yield δ34S values of −2.3 to 3.2‰; lead isotopic compositions of ore sulfides are similar to those of granitic rocks, indicating that the sulfur and ore-metals are derived from the granitic magma. We propose that the Cangyuan Pb-Zn-Ag deposit formed from magmatic hydrothermal fluids. These Cenozoic deposits situated in the west of Lanping-Changdu Basin share many similarities with the Cangyuan in isotopic compositions, including the Laochang, Lanuoma and Jinman deposits. This reveals that the Cenozoic granites could have contributed to Pb-Zn-Cu mineralization in the Sanjiang region despite the abundance of Cenozoic Pb-Zn deposits in the region, such as the Jingding Pb-Zn deposit, that is thought to be of basin brine origin.  相似文献   

18.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

19.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

20.
The Hadamengou-Liubagou Au-Mo deposit is the largest gold deposit in Inner Mongolia of North China. It is hosted by amphibolite to granulite facies metamorphic rocks of the Archean Wulashan Group. To the west and north of the deposit, there occur three alkaline intrusions, including the Devonian-Carboniferous Dahuabei granitoid batholith, the Triassic Shadegai granite and the Xishadegai porphyritic granite with molybdenum mineralization. Over one hundred subparallel, sheet-like ore veins are confined to the nearly EW-trending faults in the deposit. They typically dip 40° to 80° to the south, with strike lengths from hundreds to thousands of meters. Wall rock alterations include potassic, phyllic, and propylitic alteration. Four distinct mineralization stages were identified at the deposit, including K-feldspar-quartz-molybdenite stage (I), quartz-pyrite-epidote/chlorite stage (II), quartz-polymetallic sulfide-gold stage (III), and carbonate-sulfate-quartz stage (IV). Gold precipitated mainly during stage III, while Mo mineralization occurred predominantly in stage I. The δDH2O and δ18OH2O values of the ore-forming fluids range from −125‰ to −62‰ and from 1.4‰ to 7.5‰, respectively, indicating that the fluids were dominated by magmatic water with a minor contribution of meteoric water. The δ13CPDB and δ18OSMOW values of hydrothermal carbonate minerals vary from −10.3‰ to −3.2‰ and from 3.7‰ to 15.3‰, respectively, suggesting a magmatic carbon origin. The δ34SCDT values of sulfides from the ores vary from −21.7‰ to 5.4‰ and are typically negative (mostly −20‰ to 0‰). The wide variation of the δ34SCDT values, the relatively uniform δ13C values of carbonates (typically −5.5‰ to −3.2‰), as well as the common association of barite with sulfides suggest that the minerals were precipitated under relatively high fo2 conditions, probably in a magmatic fluid with δ34SƩS  0‰. The Re-Os isotopic dating on molybdenite from Hadamengou yielded a weighted average age of 381.6 ± 4.3 Ma, indicating that the Mo mineralization occurred in Late Devonian. Collectively, previous 40Ar-39Ar and Re-Os isotopic dates roughly outlined two ranges of mineralizing events of 382–323 Ma and 240–218 Ma that correspond to the Variscan and the Indosinian epochs, respectively. The Variscan event is approximately consistent with the Mo mineralization at Hadamengou-Liubagou and the emplacement of the Dahuabei Batholith, whereas the Indosinian event roughly corresponds to the possible peak Au mineralization of the Hadamengou-Liubagou deposit, as well as the magmatic activity and associated Mo mineralization at Xishadegai and Shadegai. Geologic, petrographic and isotopic evidence presented in this study suggest that both gold and molybdenum mineralization at Hadamengou-Liubagou is of magmatic hydrothermal origin. The molybdenum mineralization is suggested to be associated with the magmatic activity during the southward subduction of the Paleo-Asian Ocean beneath the North China Craton (NCC) in Late Devonian. The gold mineralization is most probably related to the magma-derived hydrothermal fluids during the post-collisional extension in Triassic, after the final suturing between the Siberian and NCC in Late Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号