首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three methods that follow the general format of the Seed-Idriss simplified procedure for evaluating liquefaction resistance of soils are compared in this paper. They are compared by constructing relationships between penetration resistance and small-strain shear–wave velocity (VS) implied from cyclic resistance ratio (CRR) curves for the three methods, and by plotting penetration-VS data pairs. The penetration-VS data pairs are from 43 Holocene-age sand layers in California, South Carolina, Canada, and Japan. It is shown that the VS-based CRR curve is more conservative than CRR curves based on the Standard Penetration Test (SPT) and Cone Penetration Test (CPT), for the compiled Holocene data. This result agrees with the findings of a recent probability study where the SPT-, CPT-, and VS-based CRR curves were characterized as curves with average probability of liquefaction of 31, 50, and 26%, respectively. New SPT- and CPT-based CRR equations are proposed that provide more consistent assessments of liquefaction potential for the Holocene sand layers considered.  相似文献   

2.
This paper discusses the evaluation of liquefaction potential of soil based on standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). The liquefaction classification accuracy (94.19%) of the developed liquefaction index (LI) model is found to be better than that of available artificial neural network (ANN) model (88.37%) and at par with the available support vector machine (SVM) model (94.19%) on the basis of the testing data. Further, an empirical equation is presented using MGGP to approximate the unknown limit state function representing the cyclic resistance ratio (CRR) of soil based on developed LI model. Using an independent database of 227 cases, the overall rates of successful prediction of occurrence of liquefaction and non-liquefaction are found to be 87, 86, and 84% by the developed MGGP based model, available ANN and the statistical models, respectively, on the basis of calculated factor of safety (F s ) against the liquefaction occurrence.  相似文献   

3.
The application of the simplified method for evaluating the liquefaction potential based on shear wave velocity measurements has increased substantially due to its advantages, especially for microzonation of liquefaction potential. In the simplified method, a curve is proposed to correlate the cyclic resistance ratio (CRR) with overburden stress-corrected shear wave velocity (Vs1). However, the uniqueness of this curve for all types of soils is questionable. The objective of this research is to study whether the correlation between CRR and Vs1 is unique or not. Besides, the necessity of developing the soil-specific correlations is also investigated. Based on laboratory test data, a new semi-empirical method is proposed to establish the soil-specific CRR–Vs1 correlation. To validate the proposed method, a number of undrained cyclic triaxial tests along with bender element tests were performed on two types of sands. Similar experimental data for six other types of sands reported in the literature was also compiled. Applying the proposed method, soil-specific CRR–Vs1 correlation curves were developed for these eight types of sands. It is shown that the correlation is not unique for different types of sands and the boundary curve proposed in the available simplified method can only be used as an initial estimation of liquefaction resistance. Finally, using the results of this study as well as previous ones, a chart is suggested to be used in engineering practice showing the conditions for which a detailed soil-specific CRR–Vs1 correlation study needs to be performed.  相似文献   

4.
A series of undrained cyclic direct simple shear tests, which used a soil container with a membrane reinforced with stack rings to maintain the K0 condition and integrated bender elements for shear wave velocity measurement, were performed to study the liquefaction characteristics of gap-graded gravelly soils with no fines content. The intergrain state concept was employed to categorize gap-graded sand–gravel mixtures as sand-like, gravel-like, and in-transition soils, which show different liquefaction characteristics. The testing results reveal that a linear relationship exists between the shear wave velocity and the minor fraction content for sand–gravel mixtures at a given skeleton void ratio of the major fraction particles. For gap-graded gravelly sand, the gravel content has a small effect on the liquefaction resistance, and the cyclic resistance ratio (CRR) of gap-graded gravelly sands can be evaluated using current techniques for sands with gravel content corrections. In addition, the results indicate that the current shear wave velocity (Vs) based correlation underestimates the liquefaction resistance for Vs values less than 160 m/s, and different correlations should be proposed for sand-like and gravel-like gravelly soils. Preliminary modifications to the correlations used in current evaluations of liquefaction resistance have thus been proposed.  相似文献   

5.
This paper presents a procedure to perform the risk analysis for ground failure by liquefaction. The first part of this study describes the differential equation of a smooth hysteretic model to characterize the behavior of the soil under random loading. The parameters of the proposed model to represent the experimental relationship are discussed. The second part of this study is to develop a method to calculate the probability that a specified volume of soil will liquefy at a given depth in the deposit. The liquefaction is defined as the result of cumulative damage caused by seismic loading. The fatigue life of soil can be determined on the basis of the N---S relationship and Miner's cumulative damage law. The rain-flow method is used to count the number of cycles of stress response of the soil deposit. Finally, the probability of liquefaction is obtained by integration over all the possible ground motion and the fragility curves of liquefaction potential. The sensitivity of the reliability against liquefaction to soil system parameters is also examined.  相似文献   

6.
The liquefaction behavior and cyclic resistance ratio (CRR) of reconstituted samples of non-plastic silt and sandy silts with 50% and 75% silt content are examined using constant-volume cyclic and monotonic ring shear tests along with bender element shear wave velocity (Vs) measurements. Liquefaction occurred at excess pore water pressure ratios (ru) between 0.6 and 0.7 associated with cumulative cyclic shear strains (γ) of 4% to 7%, after which cyclic liquefaction ensued with very large shear strains and excess pore water pressure ratio (ru>0.8). The cyclic ring shear tests demonstrate that cyclic resistance ratio of silt and sandy silts decreases with increasing void ratio, or with decreasing silt content at a certain void ratio. The results also show good agreement with those from cyclic direct simple shear tests on silts and sandy silts. A unique correlation is developed for estimating CRR of silts and sandy silts (with more than 50% silt content) from stress-normalized shear wave velocity measurements (Vs1) with negligible effect of silt content. The results indicate that the existing CRR–Vs1 correlations would underestimate the liquefaction resistance of silts and sandy silt soils.  相似文献   

7.

In engineering practice, the liquefaction potential of a sandy soil is usually evaluated with a semi-empirical, stress-based approach computing a factor of safety in free field conditions, defined as the ratio between the liquefaction resistance (capacity) and the seismic demand. By so doing, an estimate of liquefaction potential is obtained, but nothing is known on the pore pressure increments (often expressed in the form of normalized pore pressure ratio ru) generated by the seismic action when the safety factor is higher than 1. Even though ru can be estimated using complex numerical analyses, it would be extremely useful to have a simplified procedure to estimate them consistent with the stress-based approach adopted to check the safety conditions. This paper proposes such a procedure with reference to both saturated and unsaturated soils, considering the latter as soils for which partial saturation has been artificially generated with some ground improvement technology to increase cyclic strength and thus tackle liquefaction risk. A simple relationship between the liquefaction free field safety factor FS, and ru(Sr) is introduced, that generalizes a previous expression proposed by Chiaradonna and Flora (Geotech Lett, 2020. https://doi.org/10.1680/jgele.19.00032) for saturated soils. The new procedure has been successfully verified against some experimental data, coming from laboratory constant amplitude cyclic tests and from centrifuge tests with irregular acceleration time histories for soils having different gradings and densities.

  相似文献   

8.
Most methods for assessment of in situ seismic soil liquefaction potential require evaluation of the earthquake-induced cyclic shear stress ratio (CSR). Estimates of the in situ CSR can be developed directly, using dynamic response analyses, but it is common in ‘simplified’ analysis methods to develop estimates of the in situ CSR using empirical relationships. Unfortunately, the most widely used existing empirical relationships are based on limited response analyses and do not take full advantage of current knowledge of factors affecting this response problem. As a result, they are both biased and unnecessarily imprecise. This paper presents the results of a relatively comprehensive suite of site response studies (2153 site response analyses), performed using carefully selected suites of site conditions and input time histories, to provide an improved basis for development of estimates of in situ CSR using the rd-approach. The resulting empirical correlations, developed using the Bayesian updating method, provide a much improved basis for simplified empirical evaluation of CSR as a function of (1) depth; (2) earthquake magnitude; (3) intensity of shaking; and (4) site stiffness.  相似文献   

9.
本文通过对某核电厂取水明渠导流堤地基土粉砂层室内共振柱试验及动三轴液化试验,测定了动剪切模量、阻尼比与动剪应变幅的双曲线关系,分析了粉砂的动力变形特性,探讨了砂土的抗液化强度与液化振次之间的乘幂函数关系,确定了该地基土的抗液化强度指标。为评价导流堤的地震稳定和液化分析提供了相关参数,同时对堤坝工程场地的地震安全性评价和液化评判有良好的借鉴和参考价值。  相似文献   

10.
The present work deals with 1D and 2D ground response analysis and liquefaction analysis of alluvial soil deposits from Kanpur region along Indo-Gangetic plains. Standard penetration tests and seismic down hole tests have been conducted at four locations namely IITK, Nankari village, Mandhana and Bithoor at 1.5 m interval up to a depth of 30 m below the ground surface to find the variation of penetration blows and the shear wave velocity along the depth. From the selected sites undisturbed as well as representative soil samples have been collected for detailed soil classification. The soil profiles from four sites have been considered for 1D and 2D ground response analysis by applying the free field motions of three Himalayan earthquakes namely Chamba earthquake (Mw—5.1), Chamoli earthquake (Mw—6.4) and Uttarkashi earthquake (Mw—6.5). An average value of Peak Ground Acceleration (PGA) obtained from 1D and 2D analysis is considered for liquefaction analysis and post-liquefaction settlement. The excess pore water pressure ratio is greater than 0.8 at a depth of 24 m from ground surface for IITK, Nankari village, Bithoor sites. More than 50% of post liquefaction settlement is contributed by layers from 21–30 m for all sites. In general, the soil deposits in Kanpur region have silty sand and sand deposits and are prone to liquefaction hazards due to drastic decrease of cyclic resistance ratio (CRR) at four chosen sites in Kanpur.  相似文献   

11.
This study analyzes liquefaction in the Kumluca/Antalya residential area and surroundings, using seismic velocities of soil deposits and the predominant period of the earthquake wave. The liquefaction analysis calculates shear–stress ratio, shear–resistance ratio and safety factor. Shear wave velocity used in liquefaction analysis was determined through surface waves. Moreover, the dynamic parameters of the ground were calculated through seismic velocities. Distributions of groundwater, shear wave velocity, adjusted shear wave velocity, predominant period of vibration, soil amplification and ground acceleration of the research area were mapped. In addition, the liquefied and non-liquefied areas as a result of liquefaction analysis in Kumluca were determined and presented as maps. Examining these maps, among all these maps, the limits of the lagoon sandbar and the old lake area were determined using only the liquefaction map.  相似文献   

12.
Assessing liquefaction potential, in situ screening using cone penetration resistance, and liquefaction-remediation of non-plastic silty soils are difficult problems. Presence of silt particles among the sand grains in silty soils alter the moduli, shear strength, and flow characteristics of silty soils compared to clean host sand at the same global void ratio. Cyclic resistance (CRR) and normalized cone penetration resistance (qc1N) are each affected by silt content in a different way. Therefore, a unique correlation between cyclic resistance and cone resistance is not possible for sands and silty sands. Likewise, the response of silty soils subjected to traditional deep dynamic compaction (DC) and vibro-stone column (SC) densification techniques is influenced by the presence of silt particles, compared to the response in sand. Silty soils require drainage-modifications to make them amenable for dynamic densification techniques. The first part of this paper addresses the effects of silt content on cyclic resistance CRR, hydraulic conductivity k, and coefficient of consolidation Cv of silty soils compared to clean sand. The second part of the paper assesses the effectiveness of equivalent intergranular void ratio (ec)eq concept to approximately account for the effects of silt content on CRR. The third part of the paper explores the combined effects of silt content (viz effects of (ec)eq, k, and Cv) on qc1N using laboratory model cone tests and preliminary numerical simulation experiments. A possible inter-relationship between qc1N, CRR, accommodating the different degrees of influence of (ec)eq, k, and Cv on qc1N and CRR, is discussed. The fourth part of the paper focuses on the detrimental effects of silt content on the effectiveness of DC and SC techniques to densify silty soils for liquefaction-mitigation. Finally, the effectiveness of supplemental wick drains to aid drainage and facilitate densification and liquefaction mitigation of silty sands using DC and SC techniques is discussed.  相似文献   

13.
This paper describes a case-history of liquefaction occurred near the village of Vittorito after the April 6, 2009 L’Aquila earthquake (moment magnitude Mw = 6.3), approximately 45 km far from the epicentre. In the document, first, an estimation of the seismic motion in the area has been made. Thereafter, the performed geotechnical investigation is described, followed by the application of some fast assessment criteria for the occurrence of liquefaction, recently proposed by the new Italian Building Code. A careful assessment of all the parameters involved in conventional Seed and Idriss (1971) liquefaction analyses is considered. The cyclic resistance ratio CRR is evaluated by cone penetration tests CPT and by in situ seismic dilatometer tests SMDT; in the latter case CRR is evaluated by different empirical correlations with shear wave velocity Vs and horizontal stress index KD. Analytical data confirmed the observed occurrence of the liquefaction in Vittorito, even if the acceleration field in the area, produced by the L’Aquila earthquake, was very low.  相似文献   

14.
A safety format is proposed for the flexural design of reinforced concrete members for the combination of seismic and gravity loads, with load and resistance factors which depend on member type, on the value of the target theoretical probability of failure and on the ratio of the load effect due to gravity loads to that due to the nominal value of the seismic action, both obtained by elastic analysis. Safety factors are computed through an advanced Level II reliability procedure, using a limit state inequality between the member rotation ductility supply under monotonic loading and the peak rotation ductility and cyclic energy dissipation demands. Uncertainties considered are: for resistance, the uncertainty of failure under imposed cyclic deformations, and for action, the maximum peak ductility and energy dissipation demands in the structure's lifetime, as obtained through a series of non-linear dynamic analyses of multistorey buildings in 3D. using as input ensembles of bidirectional acceleration time-histories which describe probabilistically the extreme bidirectional seismic action in the structure's lifetime. Computed load and resistance factors are practically independent of the load-effects ratio. The load factor on the seismic action is found to be independent of member type and to increase with the theoretical probability of failure much faster than the elastic spectral value at the structure's fundamental period with probability of exceedance in the structure's lifetime. Simple rules for the dependence of the resistance modification factors on the theoretical failure probability are also derived. As for the computed values of the load factors the moment due to gravity loads is negligible in comparison to the factored seismic moment, a simplified safety checking inequality between the design flexural capacity and a reduced seismic moment is proposed, in which the ratio of the resistance to the load factor plays the role of a force reduction or effective behaviour factor for the member.  相似文献   

15.
Results are presented of laboratory resonant column and cyclic triaxial tests on specimens of two compacted soils (a sandy–silty clay and a sand–gravel mixture), planned to be used in the core and the shells, respectively, of a proposed earthfill dam. The values of low-amplitude shear modulus of the clayey material were found to increase with increasing confining pressure and decreasing water content, with deviations of ±20% from the predictions of the “Hardin equation”. On the other hand, the low-amplitude damping ratio was found to be at least four times higher than the values corresponding to natural undisturbed cohesive soils. The proposed G/G0γc curve for the compacted cohesive soil was found to be independent of confining pressure and small variations of the water content on either side of the optimum value and showed a remarkable agreement with recently published similar curves for natural cohesive soils. For the case of the sand–gravel mixture, normalized G/G0γc and Dγc curves are proposed, based on recently published results for gravelly soils and the limited data of the present study. The liquefaction resistance of the saturated sand–gravel mixture was found to be strongly dependent on its relative density, especially for high values of cyclic stress ratio. A relative density of at least 55% was found to be necessary to assure safety against earthquake-induced liquefaction of the material. The results presented herein may be used (directly or as guide) in the seismic analysis of (new or existing) earth dams constructed from similar soil materials and in addition they provide insight into the dynamic behavior of compacted soils.  相似文献   

16.
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-1, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.  相似文献   

17.
利用Monte Carlo模拟技术考虑了震源和震级的贡献及抗液化阻力的概率分布,将液化安全系数的倒数作为工程需求参数,对土层的液化危险性作概率估计,可以满足基于性态的抗震设计对于不同设防水平工程场地液化安全判定的要求。在文中应用该方法对北京地区若干场址多种设定土层情况分别进行了液化危险性分析,并在所得的大量模拟样本的基础上,引入液化需求锤击数基准值概念和土层埋深水位影响系数,进行统计分析,提出了本地区简化的液化危险性估计方法。验算表明,该简化方法有一定的合理性,也便于一般设防工程使用。作者认为其它地区也可以依此途径建立适合于该地区的液化危险性的估计方法。  相似文献   

18.
The paper presents a mathematical model for the deformation of soil under irregular cyclic loading in the simple-shear conditions. The model includes the possible change in the effective pressure in saturated soil due to the cyclic shearing, the reciprocal influence of the effective pressure on the response of the soil to the shear loading, and the pore pressure dissipation due to the seepage of the pore fluid. The hysteresis curves for the strain–stress relationship are constructed in such a way that they produce both the required backbone curve and the required damping ratio as functions of the strain amplitude. At the same time, the approach enables the constitutive functions involved in the model to be specified in various ways depending on the soil under study. The constitutive functions can be calibrated independently of each other from the conventional cyclic shear tests. The constitutive model is incorporated in the boundary value problem for the dynamic site response analysis of level ground. A numerical solution is presented for the dynamic deformation and liquefaction of soil at the Port Island site during the 1995 Hyogoken-Nambu earthquake.  相似文献   

19.
地震液化是引起地基失稳和上部结构损害的直接原因之一,而液化震害预防的第一步就是对工程场地进行液化预测和判别。静力触探(CPT)作为最主要的原位测试技术,因其具有快速、低廉、高效等优点,被广泛用于液化判别。根据国内外近年来CPT技术的发展,对不同形式的CPT[孔压静力触探技术(CPTU)技术,电阻率孔压静力触探(RCPTU)技术、地震波孔压静力触探技术(SCPTU)技术等]在地震液化评价中的应用进行系统的论述。特别介绍一种基于状态参数进行液化判别的方法,另外还简要介绍基于概率统计分析法。比较和梳理各种液化判别方法的差异性,最后,在已有研究成果的基础上分析现有CPT液化判别法存在的问题与不足。分析结果表明:状态参数法能够同时考虑围压应力和孔隙比的影响,有效地将室内试验与现场试验联系起来;SCPTU、RCPTU液化判别框架还需进一步拓展与完善;概率统计分析法需结合相应软件使其更具适用性。  相似文献   

20.
Correlation of cyclic preloading with the liquefaction resistance   总被引:1,自引:0,他引:1  
The compactivity of sand due to cyclic loading with a high number (N>103) of small cycles (εampl≤10−3) cannot be described by void ratio and stress alone. It depends strongly on the soil fabric usually described as ‘cyclic preloading’. The cyclic preloading cannot be measured directly in situ but correlates well with the liquefaction resistance. This paper demonstrates this correlation on the basis of laboratory tests. Practical applications can be derived from this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号