首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent observations suggest that there may be a causal relationship between solar activity and the strength of the winter Northern Hemisphere circulation in the stratosphere. A three-dimensional model of the atmosphere between 10–140 km was developed to assess the influence of solar minimum and solar maximum conditions on the propagation of planetary waves and the subsequent changes to the circulation of the stratosphere. Ultraviolet heating in the middle atmosphere was kept constant in order to emphasise the importance of non-linear dynamical coupling. A realistic thermo-sphere was achieved by relaxing the upper layers to the MSIS-90 empirical temperature model. In the summer hemisphere, strong radiative damping prevents significant dynamical coupling from taking place. Within the dynamically controlled winter hemisphere, small perturbations are reinforced over long periods of time, resulting in systematic changes to the stratospheric circulation. The winter vortex was significantly weakened during solar maximum and western phase of the quasi-biennial oscillation, in accordance with reported 30 mb geopotential height and total ozone measurements.  相似文献   

2.
本文利用美国国家大气环境中心(NCAR)的二维化学、辐射和动力相互作用的模式(SOCRATES),模拟了大气中N2O增加对O3和温度的影响,并从化学、辐射和动力过程讨论了影响原因,此外还与大气甲烷和平流层水汽增加对大气环境的影响进行了对比.分析表明:大气中N2O浓度增加以后,将通过化学过程引起30 km以上O3损耗,30~40 km损耗较多;30 km以上降温明显,下平流层中低纬度地区以及对流层O3增加并有微弱升温;30~40 km附近,北半球中高纬地区O3减少以及降温幅度都大于南半球.对流层升温主要是N2O和O3增加所致,而平流层温度变化主要受O3控制.北半球中高纬地区动力过程对温度变化的反馈较其它地区明显,这种反馈对平流层中高层北半球中高纬地区温度和O3的变化都有明显影响.大气中甲烷增加引起的O3损耗在45 km以上,45 km以下O3增加.平流层水汽增加会引起40 km以上O3减少,20~40 km大部分地区O3增加.N2O增加造成的O3损耗正好位于臭氧层附近,其排放对未来O3层恢复至关重要.N2O增加引起下平流层15~25 km中低纬度地区有弱的升温,这与其它温室气体增加对该地区温度的影响不同,CO2,CH4和H2O等增加后下平流层通常是降温.  相似文献   

3.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

4.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

5.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

6.
Stratospheric warming effects on the tropical mesospheric temperature field   总被引:1,自引:0,他引:1  
Temperature observations at 20–90 km height and 5–15°N during the winter of 1992–1993, 1993–1994 and 2003–2004, from the Wind Imaging Interferometer (WINDII) and Microwave Limb Sounder (MLS) experiments on the Upper Atmosphere Research Satellite (UARS) satellite and the Sounding the Atmosphere using Broadband Emission Radiometry (SABER) experiment on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite are analyzed together with MF radar winds and UK Meteorological Office (UKMO) assimilated fields. Mesospheric cooling is observed at the time of stratospheric warming at the tropics correlative with stratospheric warming events at middle and high latitudes. Planetary waves m=1 with periods of 4–5, 6–8, 10 and 12–18 days are found to dominate the period. Westward 7- and 16-day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   

7.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

8.
The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.  相似文献   

9.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

10.
11.
The interaction between the factors of the quasi-biennial oscillation (QBO) and the 11-year solar cycle is considered as an separate factor influencing the interannual January–March variations of total ozone over Northeastern Europe. Linear correlation analysis and the running correlation method are used to examine possible connections between ozone and solar activity at simultaneous moment the QBO phase. Statistically significant correlations between the variations of total ozone in February and, partially, in March, and the sunspot numbers during the different phases of QBO are found. The running correlation method between the ozone and the equatorial zonal wind demonstrates a clear modulation of 11-y solar signal for February and March. Modulation is clearer if the QBO phases are defined at the level of 50 hPa rather than at 30 hPa. The same statistical analyses are conducted also for possible connections between the index of stratospheric circulation C1 and sunspot numbers considering the QBO phase. Statistically significant connections are found for February. The running correlations between the index C1 and the equatorial zonal wind show the clear modulation of 11-y solar signal for February and March. Based on the obtained correlations between the interannual variations of ozone and index C1, it may be concluded that a connection between solar cycle – QBO – ozone occurs through the dynamics of stratospheric circulation.  相似文献   

12.
Spänkuch  D.  Döhler  W.  Kubasch  H. 《Pure and Applied Geophysics》1973,106(1):1208-1218
Summary The correlation matrix for the vertical ozone distribution and the temperature-ozone cross-correlation matrix, which was calculated from ozone soundings made over Berlin between 1967 and 1970, the statistical structure of the vertical ozone profile (correlation coefficients, average profiles, average standard deviation, relative variability) was derived for the three ozone seasons. The partial ozone pressure does not at all heights follow a normal distribution (e. g. at tropopause level). Generally, the correlation between tropospheric and stratospheric ozone is rather poor. In some layers the highest correlation coefficients, i.e. –0.3 and +0.4, occur in autumn (October to December) and in winter and spring (January to April). The correlation between the ozone amounts of various stratospheric layers is distinct in autumn, less distinct in summer (May to September) and entirely missing from January to April. Conspicuous cross-correlations between temperature and ozone have been found for all three seasons. a) With a negative correlation between tropospheric temperature and middle tropospheric to middle stratospheric ozone (maximum up to –0.8); b) with a rather strong positive correlation between the ozone amount and the temperature in the lower stratosphere (maximum up to +0.84); c) with a positive correlation between the ozone amount of the middle stratosphere and the temperature of the middle stratosphere (maximum up to +0.8). The highest correlation coefficients occur in autumn.  相似文献   

13.
本文利用热层-电离层-中间层能量和动力学卫星TIMED中宽带发射辐射计SABER观测的临边大气长波红外背景辐射数据来研究平流层增温效应,基于2012/2013年1—3月在20~100 km高度内的临边大气长波红外背景辐射数据,采用微扰方法,得到辐射扰动的时空分布.结果显示:大气长波红外背景辐射扰动数据能够更精细的展示平流层增温事件的发生,2013年平流层爆发性增温效应下最大辐射扰动幅度出现在40 km处可达160%,而利用温度扰动数据表征此事件的发生时最大温度扰动幅度出现在40 km处只有21%.针对2012年弱平流层增温效应,温度扰动幅度最大值出现在40 km处为16.4%,而辐射扰动幅度的最大值在40 km处可达91%.大气长波红外背景辐射的纬度分布体现出此事件发生于高纬度地区;其经度分布在20~50 km范围内呈现"w"形状;而50 km和80 km处大气长波红外背景辐射的极值区域范围随着事件的发生在高纬度地区都是先扩大随后缩小的过程.这表明高层大气临边红外辐射信号可用于研究平流层增温效应,尤其是对于温度弱起伏的小扰动事件.这对于掌握临近空间环境辐射形成机理及其变化特性亦具有重要意义.  相似文献   

14.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

15.
臭氧的时空分布特征对气候和环境变化具有显著影响,随着臭氧资料数量的增加和质量的提高,有必要对臭氧时空分布特征及其与气候变化的关系进行详细研究.本文利用欧洲中期天气预报中心提供的1979—2013年的全球月平均臭氧总量资料、平流层温度场资料,采用旋转经验正交函数分解(REOF)、Morlet小波分析、合成分析等方法研究了20°N以北的北半球冬季(12—2月)臭氧总量异常的主要空间分布结构与时间演变特征,并进一步分析了主要模态与平流层上层(2hPa)、中层(30hPa)以及下层(100hPa)温度异常的关系.结果表明:近30年北半球冬季臭氧总量异常变化最显著的区域主要有5个,分别位于极地地区(75°N—90°N,0°—360°)、北半球副热带地区(20°N—40°N,0°—360°)、阿拉斯加地区(60°N—75°N,180°—260°E)、北大西洋地区(45°N—60°N,310°E—360°E)及西伯利亚地区(50°N—65°N,80°E—130°E).5个区域的冬季臭氧总量异常具有明显的年际和年代际变化特征.1980年代后期是各个区域的臭氧总量异常由年代际偏多转为偏少的转换时段.此外,各区域存在显著的年际变化周期,而且各个区域的年际周期存在明显的差异.臭氧总量异常变化与平流层温度异常变化的关系表明,臭氧总量异常的增加(减少)能够导致平流层上层温度异常偏冷(暖)和平流层中、下层温度异常偏暖(冷),其中平流层中层温度异常的偏暖(冷)程度要比下层更加明显.  相似文献   

16.
London  Julius  Park  Jae 《Pure and Applied Geophysics》1973,106(1):1611-1617
Summary Observations of the ozone distribution indicate that modifications are required to the photochemical theory. These modifications involve ozone destruction by hydrogen and nitrogen products and ozone transport (both vertical and horizontal) due to atmospheric motions in the stratosphere. If the photochemical terms in the ozone continuity equation are omitted, changes due to atmospheric transport alone can be evaluated.Numerical computations were made of the three-dimensional wind structure as derived from the 12-layer (0–36 km) General Circulation Model developed by NCAR. The results showed that ozone is transported from the equatorial stratosphere poleward and downward in both hemispheres. The horizontal transport is primarily by the Hadley Cell in the tropics and by large-scale eddies in mid and high latitudes. The dominant mechanism for ozone transport are found to be similar to those derived for the horizontal heat and momentum transport found in other general circulation studies.  相似文献   

17.
The present study reports long-term variabilities and trends in the middle atmospheric temperature (March 1998–2008) derived from Rayleigh backscattered signals received by the Nd:YAG lidar system at Gadanki (13.5°N, 79.2°E). The monthly mean temperature compositely averaged for the years 1998–2008 shows maximum temperature of 270 K in the months of March–April and September at altitudes between 45 and 55 km. The altitude profile of trend coefficients estimated from the 10 years of temperature observations using regression analysis shows that there exists cooling at the rate with 1σ uncertainty of 0.12±0.1 K/year in the lower stratospheric altitudes (35–42 km) and 0.2±0.08 K/year at altitudes near 55–60 km. The trend is nearly zero (no significant cooling or warming) at altitudes 40–55 km. The regression analysis reveals the significant ENSO response in the lower stratosphere (1 K/SOI) and also in mesosphere (0.6 K/SOI). The solar cycle response shows negative maxima of 1.5 K/100F10.7 units at altitudes 36 km, 41 km and 1 K/100F10.7 units at 57 km. The response is positive at mesospheric altitude near 67 km (1.3 K/100F10.7 units). The amplitudes and phases of semiannual, annual and quasi-biennial oscillations are estimated using least squares method. The semiannual oscillation shows larger amplitudes at altitudes near 35, 45, 62 and 74 km whereas the annual oscillation peaks at 70 km. The quasi-biennial oscillations show larger amplitudes below 35 km and above 70 km. The phase profiles of semiannual and annual oscillations show downward propagation.  相似文献   

18.
The spatial and temporal distribution of total ozone over India and its vertical distribution in theatmosphere during 1964–1969 was studied using Dobson spectrophotometer data at a network of six stations in India, Srinagar (34°N), New Delhi (28°N), Varanasi (24°N), Ahmedabad (23°N), Dum Dum (22°N), and Kodaikanal (10°N). The annual and seasonal variations show a clear phase-shift in the occurrence of the ozone maxima and minima as one proceeds from higher to lower latitudes in the tropics. In the northern stations (north of 25°N) the increase in total ozone during the course of the annual variation is caused by the fractional increase in all layers from the ground to 28 km, the main contribution coming from 10–24 km. Above 28 km the concentration changes roughly in accordance with photochemical production.In lower latitudes (south of 25°N) an increase in total ozone amount during the annual cycle is caused by a gradual increase in all the layers from the ground to 36 km above which the variation is negligible.  相似文献   

19.
梁晨  薛向辉  陈廷娣 《地球物理学报》2014,57(11):3668-3678
本文利用2007年1月至2012年12月的COSMIC卫星温度剖线,从中提取了垂直波长在3~10 km的重力波扰动信息,进而分析了全球平流层大气重力波的分布特征.赤道地区低平流层重力波表现出明显的准两年变化,这种变化与风场的准两年变化具有明显的相关性,向下发展速度约为1 km/月;赤道地区高平流层(35 km以上区域)的重力波活动则存在明显的半年变化.中高纬度重力波活动主要表现为冬季强夏季弱.在南极地区存在着与急流的时间、空间以及强度变化密切相关的重力波分布特征,这说明在南极极夜急流是非常重要的一个重力波源;而在北极极夜急流的作用则没有那么强.此外,通过考察不同高度的重力波活动特征,我们发现:30 km以下重力波活动较强区域主要在赤道地区且与强对流区分布基本吻合,地形诱发的以及与天气系统相关的强重力波活动在该高度范围内同样出现;而在30 km以上的区域重力波活动强度分布则会出现与平流层爆发性增温以及极夜急流有关的变化.  相似文献   

20.
Evaluations of radiosonde soundings over North America and Europe, measurements aboard commercial airlines, and permanent ozone registrations at nineteen ground-based stations between Tromsö, Norway, and Hermanus, South Africa, yield three belts of higher ozone intrusion from the stratosphera and maximum values of the annual means at about 30°N, at between 40°–45°N and at about 60°N. A marked decrease of the annual mean values of the tropospheric ozone is detected towards the equator and the pole, respectively.In the northen hemisphere the maximum of the annual cycle of the tropospheric ozone concentration occurs in spring at high latitudes and in summer at mid-latitudes.For the tropical region from 30°S to 30°N a strong asymmetry of the northern and southern hemisphere occurs. This fact is discussed in detail. The higher troposphere of the tropics seems to be a wellmixed reservoir and mainly supplied with ozone from the tropopause gap region in the northern hemisphere. The ozone distribution in the lower troposphere of the whole tropics seems to be controlled by the up and down movements of the Hadley cell. The features of large-scale and seasonal variation of tropospheric ozone are discussed in connection with the ozone circulation in the stratosphere, the dynamic processes near the tropopause and the destruction rate at the earth's surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号