首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Astrosat is the first Indian satellite mission dedicated for astronomical studies. It is planned for launch during 2014 and will have five instruments for multi-wavelength observations from optical to hard X-rays. Cadmium Zing Telluride Imager (CZTI) is one of the five instruments aiming for simultaneous X-ray spectroscopy and imaging in the energy range of 10 keV to 100 keV (along with all sky photometric capability unto 250 keV). It is based on pixilated CZT detector array with total geometric area of 1024 cm2. It will have two-dimensional coded mask for medium resolution X-ray imaging. The CZT detector plane will be realized using CZT detector modules having integrated readout electronics. Each CZT detector module consists of 4 cm × 4 cm CZT with thickness of 5 mm which is further pixilated into 16 × 16 array of pixels. Thus each pixel has size of 2.5 mm × 2.5 mm and thickness of 5 mm. Such pixilated detector plane can in principle be used for hard X-ray polarization measurements based on the principle of Compton scattering by measuring azimuthal distribution of simultaneous events in two adjacent pixels. We have carried out detailed Geant4 simulations for estimating polarimetric capabilities of CZTI detector plane. The results indicate that events in the energy range of 100 keV to 250 keV, where the 5 mm thick CZT detector has significant detection efficiency, can be used for polarimetric studies. Our simulation results indicate the minimum detectable polarization (MDP) at the level of ~ 10% can be achieved for bright Crab like X-ray sources with exposure time of ~500 ks. We also carried out preliminary experiments to verify the results from our simulations. Here we present detailed method and results of our simulations as well as preliminary results from the experimental verification of polarimetric capabilities of CZT detector modules used in Astrosat CZTI.  相似文献   

2.
Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high resolution devices for hard X-ray imaging and spectroscopic studies. The new series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of 20 to 150 keV, are used to image solar flares in hard X-rays. Since these modules are essentially manufactured for commercial applications, we have carried out a series of comprehensive tests on these modules so that they can be confidently used in space-borne systems. These tests lead us to select the best three pieces of the ??Gold?? modules for the RT-2/CZT payload. This paper presents the characterization of CZT modules and the criteria followed for selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries, along with three CZT modules, a high spatial resolution CMOS detector for high resolution imaging of transient X-ray events. Therefore, we discuss the characterization of the CMOS detector as well.  相似文献   

3.
The Solar X-ray Spectrometer (SOXS) mission onboard GSAT-2 Indian Spacecraft was launched on 08 May 2003 using GSLV-D2 rocket by Indian Space Research Organization (ISRO). SOXS aims to study solar flares, which are the most violent and energetic phenomena in the solar system, in the energy range of 4–56 keV with high spectral and temporal resolution. SOXS employs state-of-the-art semiconductor devices, viz., Si-Pin and CZT detectors to achieve sub-keV energy resolution requirements. In this paper, we present an overview of data acquisition, control, communication and computation of low energy payload of the SOXS mission.  相似文献   

4.
Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.  相似文献   

5.
Imaging in hard X-rays of any astrophysical source with high angular resolution is a challenging job. Shadow-casting technique is one of the most viable options for imaging in hard X-rays. We have used two different types of shadow-casters, namely, Coded Aperture Mask (CAM) and Fresnel Zone Plate (FZP) pair and two types of pixellated solid-state detectors, namely, CZT and CMOS in RT-2/CZT payload, the hard X-ray imaging instrument onboard the CORONAS-PHOTON satellite. In this paper, we present the results of simulations with different combinations of coders (CAM & FZP) and detectors that are employed in the RT-2/CZT payload. We discuss the possibility of detecting transient Solar flares with good angular resolution for various combinations. Simulated results are compared with laboratory experiments to verify the consistency of the designed configuration.  相似文献   

6.
Charge coupled devices (CCDs) are under active investigation as imaging detectors in future X-ray astronomy satellites. The exploitation of such detectors holds great promise because of their capability to perform simultaneous imaging and spectroscopy. Unfortunately, standard readout techniques give a temporal resolution insufficient to study X-ray sources showing variability on timescales less than few seconds. In this paper alternative, non-imaging readout modes are investigated, in order to achieve millisecond temporal resolution for point-like sources. Simulation results are presented for the EPIC camera, the focal plane instrument for ESA's mission XMM, showing that the required temporal capabilities can be reached without loss of energy resolution.Work performed in part at the IFC/CNR, Milan, supported by a special EPIC grant from LABEN S.p.A.  相似文献   

7.
As the areas of CCD detectors and CCD mosaics have become larger and larger,the number of readout channels in astronomical cameras has increased accordingly to keep the image readout time within an acceptable range.For the large area cameras or the mosaic cameras,the analog Correlated Double Sampling(aCDS)circuit used in traditional astronomical cameras for suppressing readout noise is difficult to integrate into the camera controllers within the constraints of the space and energy consumption.Recently,digital CDS(dCDS)technology has been developed to solve this problem,which also offers novel analysis and noise suppression methods.In this study,a mathematical model is presented to conveniently analyze the frequency characteristic of a dCDS circuit,which is then simulated by a numerical method for investigating the noise suppression capability with different sampling weights.Importantly,using this model,the extreme point with lowest readout noise can be predicted for a certain dCDS model;and for a specific CCD readout frequency,readout noise can be suppressed by selecting the proper dCDS model.A testing system is then constructed for validating the efficiency of the proposed method.  相似文献   

8.
Large area X-ray propositional counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3–80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of \({\sim }6000\,\hbox {cm}^{2}\) at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at \({\sim }\)2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. In this article, we present salient features of the LAXPC detectors, their testing and characterization in the laboratory prior to launch and calibration in the orbit. Some preliminary results on timing and spectral characteristics of a few X-ray binaries and other type of sources, are briefly discussed to demonstrate that the LAXPC instrument is performing as planned in the orbit.  相似文献   

9.
We present a study of 10 microflares observed in 4–30 keV by SOXS mission simultaneously with Hα observations made at NAOJ, Japan during the interval between February and August 2004. The X-ray and Hα light curves showed that the lifetime of microflares varies between 4 and 25 min. We found that the X-ray emission in all microflares under study in the dynamic energy range of 4–30 keV can be fitted by thermal plus non-thermal components. The thermal spectrum appeared to start from almost 4 keV, low level discriminator (LLD) of both Si and CZT detectors, however it ends below 8 keV. We also observed the Fe line complex features at 6.7 keV in some microflares and attempted to fit this line by isothermal temperature assumption. The temperature of isothermal plasma of microflares varies in the range between 8.6 and 10.1 MK while emission measure between 0.5 and 2x1049 cm-3. Non-thermal (NT) emission appeared in the energy range 7–15 keV with exponent -6.8 ≤γ-4.8. Our study of microflares that had occurred on 25 February 2004 showed that sometimes a given active region produces recurrent microflare activity of a similar nature. We concluded from X-ray and simultaneous Hα observations that the microflares are perhaps the result of the interaction of low lying loops. It appears that the electrons that accelerated during reconnection heat the ambient coronal plasma as well as interact with material while moving down along the loops and thereby produce Hα bright kernels.  相似文献   

10.
We present the first results from the ‘Low Energy Detector’ pay-load of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20°C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼1.7keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy (E p) of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width (ω) of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements ofw with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both Epand ω with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.  相似文献   

11.
CATSAT is a small, fast and cheap space mission currently funded for Phase A studies under the Student Explorer Demonstration Initiative (STEDI) by University Space Research Association. Its prime scientific objective is to determine burst distances by measuring their spectra at energies from < 500 eV to several MeV. Soft X-ray spectral measurements will be made with 2 cm2 Si Avalanche Photodiodes (APD). The spectrometer will consist of seven collimated arrays, each containing 14 APDs and covering 1 steradians. CATSAT also contains three other context instruments. The Directional Gamma Spectrometer is a NaI-PMT array which will provide burst triggering as well as spectra and directional information from > 200 keV observations. The Hard X-Ray spectrometer consists of CaF2(Eu)-PMT detectors which are optimized in the cyclotron absorption energy band. The X-ray Albedo Polarimeter consists of nine collimated NaI-PMT detectors observing the earth reflected emission. Results from the XAP will be used to determine the burst direction and to place constraints on X-ray polarization. CATSAT was designed at three universities to be built with student help in two years for a cost of $3.5M.  相似文献   

12.
We present the first results from the low-energy detector payload of the solar X-ray spectrometer (SOXS) mission, which was launched onboard the GSAT-2 Indian spacecraft on May 08, 2003 by the GSLV-D2 rocket to study solar flares. The SOXS low-energy detector (SLD) payload was designed, developed, and fabricated by the Physical Research Laboratory (PRL) in collaboration with the Space Application Centre (SAC), Ahmedabad and the Indian Space Research Organization (ISRO) Satellite Centre (ISAC), Bangalore. The SLD payload employs state-of-the-art, solid-state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (−20 °C). The energy ranges of the Si PIN and CZT detectors are 4 – 25 and 4 – 56 keV, respectively. The Si PIN provides sub-keV energy resolution, while the CZT provides ~1.7 keV energy resolution throughout the energy range. The high sensitivity and sub-keV energy resolution of the Si PIN detector allows measuring the intensity, peak energy, and the equivalent width of the Fe-line complex at approximately 6.7 keV, as a function of time in all ten M-class flares studied in this investigation. The peak energy (E p) of the Fe-line feature varies between 6.4 and 6.7 keV with increase in temperature from 9 to 58 MK. We found that the equivalent width (w) of the Fe-line feature increases exponentially with temperature up to 30 MK and then increases very slowly up to 40 MK. It remains between 3.5 and 4 keV in the temperature range of 30 – 45 MK. We compare our measurements of w with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both E p and w with temperature as being to the changes in the ionization and recombination conditions in the plasma during the flare, and as a consequence, the contribution from different ionic emission lines also varies.  相似文献   

13.
Lin  R. P.  Curtis  D. W.  Primbsch  J. H.  Harvey  P. R.  Levedahl  W. K.  Smith  D. M.  Pelling  R. M.  Duttweiler  F.  Hurley  K. 《Solar physics》1987,113(1-2):333-345

We describe a balloon payload designed to study the processes of energy release, particle acceleration, and heating of the active corona, in hard X-ray microflares and normal flares. An array of liquid nitrogen-cooled germanium detectors together with large area phoswich scintillation detectors provide the highest sensitivity (∼500 cm2) and energy resolution (≤0.7 keV) ever achieved for solar hard X-ray (∼15–600 keV) measurements. These detectors were flown in February 1987 from Australia on a long duration RAdiation COntrolled balloON (RACOON) flight (LDBF) which provided 12 days of observations before cutdown in Brazil. The payload includes solar cells for power, pointing and navigation sensors, a microprocessor controlled data system with VCR tape storage, and transmitters for GOES and ARGOS spacecraft. This successful flight illustrates the potential of LDBF's for solar flare studies.

  相似文献   

14.
Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5–10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.  相似文献   

15.
SciMeasure, in collaboration with Emory University and the Jet Propulsion Laboratory, has developed a very versatile CCD controller for use in adaptive optics, optical interferometry, and other applications requiring high-speed readout rates and/or low read noise. The overall architecture of this controller system will be discussed and its performance using both EEV CCD39 and MIT/LL CCID-19 detectors will be presented. This controller is used in the adaptive optics system, developed by JPL, for the 200′′ Hale telescope at Palomar Mountain. Early diffraction-limited science results, recently achieved by the AO system, are presented. We gratefully acknowledge the financial support of NASA through SBIR contracts NAS8–97195 and NAS8–98081. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We discuss an electromagnetic sampling calorimeter for the detection of very high energy gamma-rays on the Moon, which is based on the use of scintillating cylinders and plates imbedded in the lunar soil. The use of lunar soil as a calorimeter radiator reduces the weight of the material to be transported to the Moon and minimises environmental impact. Plastic scintillator bars inserted into the regolith about 1.5 m are the active elements of this instrument: at the surface, each bar is terminated by a plastic scintillator plate to veto high energy charge particles. The readout system for the scintillator bars and plates are based on recently developed single photon solid state detectors (Silicon Photomultiplier, SiPM), extremely compact, sturdy and sensitive devices suited for detecting small light pulses in a space experiment. The performance of a regolith-scintillator calorimeter is evaluated and the relevant parameters are optimised using a GEANT4 simulation.  相似文献   

17.
SciMeasure, in collaboration with Emory University and the Jet Propulsion Laboratory, has developed a very versatile CCD controller for use in adaptive optics, optical interferometry, and other applications requiring high-speed readout rates and/or low read noise. The overall architecture of this controller system will be discussed and its performance using both EEV CCD39 and MIT/LL CCID-19 detectors will be presented. This controller is used in the adaptive optics system, developed by JPL, for the 200′′ Hale telescope at Palomar Mountain. Early diffraction-limited science results, recently achieved by the AO system, are presented. We gratefully acknowledge the financial support of NASA through SBIR contracts NAS8–97195 and NAS8–98081.  相似文献   

18.
19.
We have evaluated several solid state detectors which offer excellent energy resolution at room temperature for soft X-rays. For soft X-rays (< 1 keV to 20 keV), silicon P-intrinsic-N (PIN) and avalanche-mode photodiodes (APD's) have been studied. Using commercially available charge sensitive pre-amplifiers, these photodiodes provide 1 keV resolution without cooling. Their detection efficiencies are limited to about 20 keV and 15 keV, respectively. To overcome this constraint, we have studied thick (1.5 mm) PIN detectors made by Micron Semiconductor Ltd., U.K., as well as compound semiconducting materials with high Z constituents such as CZT and PbI2. PbI2 allows high detection efficiencies of photons up to 100 keV with detectors 100–300 microns thick. These new detectors offer the capability to study the low-energy spectral evolution of Gamma ray bursts (GRBs). A matrix of these detectors could be used as an image plane detector with moderate spatial resolution for imaging.  相似文献   

20.
A bulk micromegas micropattern charge readout device has, for the first time, been operated at room temperature in low pressure carbon disulphide vapour. This is a key step opening prospects for use of micromegas readout for large volume negative ion time projection chambers (TPCs) without magnets, such as proposed for directional dark matter detectors and other rare event applications. The dependence of the gain on the amplification field, pressure and drift field has been evaluated. For the available gap size of 75 μm a maximum gain of 1300 ± 120 was achieved in 40 torr vapour with an energy resolution of 22% for 5.9 keV 55Fe X-rays. From a fit to the data, the Townsend coefficient gas parameters A and B have been derived. Operation has also been successfully achieved in xenon:carbon disulphide blends over a range of partial and total pressures. A gain of 890 ± 130 at an energy resolution of 35% has been recorded for a 1:1 blend at a total pressure of 80 torr. Possible improvements are discussed in the context of operation in directional dark matter TPCs as a replacement for multi-wire proportional counters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号