首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-scale spatially periodic distortions of auroral forms have been studied utilizing low-light level television observations made at various locations in the Northern and Southern Hemispheres. The most commonly observed features were folds and vortex-like curl formations. The curls, identified here with the Kelvin-Helmholtz instability due to fluid shear, invariably had a counterclockwise rotational shape and motion when viewed in a direction anti-parallel to the Earth's magnetic field. The typical measured wavelength (5 km) and measured growth rate (4.2 sec−1) were used to evaluate the Kelvin-Helmholtz dispersion relation for the apparent shear ωs = ∂ νx/ ∂y (28 sec−1). The apparent horizontal velocities of both folds (0–5 km/sec) and curls (0–22 km/sec) were invariably observed to be counterclockwise with respect to the multiple arc centre when viewed antiparallel to B. Consistent agreement between rotational shape and rotational motion suggests that the apparent growth rate and the apparent horizontal velocities closely approximate the actual values. If the shear results from E×B drifts in a space charge field, the calculated value for ωs, implies an unneutralized electron density 0–1 cm−3 and a ΔE across the arc element 500mV/m. The velocity measurements indicate that the ΔE values for individual elements can combine to produce transient electric fields at the edges of multiple arcs as high as 1000 mV/m.  相似文献   

2.
A quantitative theoretical analysis of electric field and current distributions in the ionosphere is given assuming certain time variable convection field profiles at an altitude of 1250 km. A number of idealized assumptions regarding the ionospheric characteristics are defined and discussed. A qualitative discussion of a quasi-stationary configuration with an approximately curl free electric field is also given. Geomagnetically field aligned current densities i of the order 10−5−10−4A/m2 are consistent with quite reasonable assumptions about the convection field E. Oscillations in E with periods of the order of 10 sec should readily be generated when σ is large. In the quasi-stationary case there may be a mechanism that strengthens and concentrates i locally under certain conditions. It is found that a number of recent high altitude observations of convection field reversals may be consistent with large potential drops along the magnetic field lines. The solutions obtained as well as some of the basic assumptions are compared with observations.  相似文献   

3.
The magnetic disturbance associated with East-West current in the ionosphere is calculated in terms of the production and loss of ionisation. This is physically equivalent to a conventional equation of the type j = [σ]E, but may be preferred in many experimental circumstances. The relationship between the deformation of an ionospheric layer and the electric current, or magnetic disturbance in it, is explored in detail. Applications to mid-latitude sporadic-E, the equatorial electrojet, night-E, deformation of mid-latitude E-layer by quiet and disturbed currents and deformation of the E-layer by auroral electrojets are considered. Under a wide range of conditions, vertical backscatter devices can be used to find the altitude profile of the East-West component of ionospheric electric current by measuring the deformations of the vertical profiles of electron density.  相似文献   

4.
Midlatitude sporadic-E layers and vertical metallic ion drift profiles   总被引:1,自引:0,他引:1  
An investigation of the relationship between the occurrence of midlatitude sporadic-E layers and convergent points in the ion drift profiles has been made using the 430 MHz incoherent scatter radar at the Arecibo Observatory. Electron concentration profiles were obtained using a 13 baud Barker coded pulse yielding 600 m range resolution, while a 5-pulse sequence with 2.4 km range resolution was used to obtain line-of-sight ion drift velocities. With some exceptions, observed sporadic-E layers occur near convergent points in the vertical metallic ion drift profile, and vertical motions of these layers follow the vertical motions of the convergent point.Vertical motions and intensity variations of observed sporadic-E layers are due to interaction between the mean wind, tidal waves, and gravity waves of different periods producing a predominantly downward motion of the layer. However, a sudden increase in the altitude of a sporadic-E layer has been observed. This is attributed to the disappearance of the convergent point—releasing the layer—followed by an ascent of the layer to the closest overlying convergent point.  相似文献   

5.
High resolution electron density profiles were obtained with the incoherent scatter radar EISCAT at Ramfjordmoen over the height range 70–130 km during a period of auroral radio absorption events. The experiment, which was specially designed for D-region study, was carried out with a vertical radar beam and was based on a Barker-coded multipulse scheme with four frequency channels. The achieved height and time resolutions in electron density profiles were 750 m and 15 s respectively. The absorption values calculated from these electron density data show good temporal and spatial correspondence with absorption values obtained at local and nearby riometer stations.  相似文献   

6.
It is shown that electrostatic fields parallel (E11) to the geomagnetic field cannot be the major mechanism that accelerates charged particles to auroral energies. Principal arguments are that electron and proton precipitation occur simultaneously, and also that precipitated electrons with energies less than 100 eV are found to accompany the electrons with energies of 1–10 keV that excite auroral luminosity. It is further shown that essentially all the ambient plasma in an entire tube of flux is required to sustain this intense low-energy precipitation, and this places a severe constraint on any replenishment process. It is found that generally the upper limit to (E11) throughout the auroral regions of the ionosphere and magnetosphere is of order 10 μV/m and it may be appreciably less. Relevant measurements are reviewed briefly. It is concluded that while there may occasionally be significant E11 fields, they play only a minor role-if any-in auroral phenomena.  相似文献   

7.
The data on intensive small-scale electric fields and related transverse magnetic disturbances observed from Intercosmos-Bulgaria 1300 satellite at altitudes of 800–900 km in the auroral ionosphere are presented here. The typical time scale of the phenomena is of the order of 1 s, the amplitudes reach 250 mV m−1 in electric field and up to 300 nT in magnetic field. A detailed correlation between the variations of electric and magnetic fields in such structures is shown. Some peculiarities are presented which show that the observed electric jumps are transient electromagnetic disturbances rather than steady electrostatic structures.  相似文献   

8.
We use a 1-D chemical diffusive model, in conjunction with the measured neutral atmospheric structure, to analyze the Voyager RSS electron density, ne, profiles for the ionospheres of Jupiter and Saturn. As with previous studies we find serious difficulties in explaining the ne measurements. The model calculates ionospheres for both Jupiter and Saturn with ne peaks of 10 times the measured peaks at altitudes which are 900–1000 km lower than the altitude of peaks in the RSS electron densities. Based on our knowledge of neutral atmospheric structure, ionization sources, and known recombination mechanisms it seems that, vibrational excitation of H2 must play some role in the conversion of slowly radiatively recombining H+ ions to the relatively more rapidly recombining H2+ and H3+ ions. In addition, vertical ion flow induced by horizontal neutral winds or electric fields probably also play some role in maintaining the plasma peaks observed both for Jupiter and Saturn to be at high altitudes. For the ionosphere of Saturn, the electron densities are affected by a putative influx of H2O molecules, ΦH2O, from the rings. To reproduce the RSS V2 exit ne results model requires an influx of ΦH2O 2 × 107 molecules cm−2 s−1 without invoking H2f vibrational excitation. To maintain the model ne peak at the measured altitude vertical plasma drift maintained by meridional winds or vertical electric fields is required. The amounts of H2O are consistent with earlier estimates of Connerney and Waite (1984) and do not violate any observational constraints.  相似文献   

9.
The THEMISTOCLE array of 18 Cherenkov detectors which has a 3 TeV gamma energy threshold, has detected a signal from the Crab nebula at a 5.8 standard deviation level. Information on the energy spectrum is obtained in the range 3–15 TeV. The integrated flux can be fitted with the form, Φ (> E) = (3.7 ± 0.5) × 10-12 (E/5)-−1.5 ± 0.20 cm−2 s−1 (E in TeV) compatible with the extrapolation of results at lower energies. The Crab signal is used to measure the angular resolution of the multi-telescope technique. The value obtained is 2.3 mr (0.15°) in agreement with the results of simulations, and confirms the interest of this new method for multi-TeV gamma-ray detection.  相似文献   

10.
E-region electron density profiles with high resolution in time and altitude (5 s and 2 km, respectively) measured by the EISCAT incoherent scatter radar are used to examine the conductivity changes during substorm growth, onset and expansion phases for seven substorms occurring in the local evening sector. The measurements are related to electric fields and neutral winds measured by the radar, to ground magnetometer and riometer records, and to optical features, including the westward-travelling surge and auroral bulge. Auroral features are identified using all-sky camera photographs and images from the Viking satellite. Conductances and electric fields in the zone of diffuse aurora corresponding to the westward substorm electrojet are found to be consistent with existing models. Conductances in the discrete auroral arcs marking the expanding edge of the substorm are found to be much higher, and electric fields rather lower, than previously assumed. The magnetic signatures of the discrete arcs are found to be best explained by Hall and Pedersen currents driven by a southward neutral wind, as is observed by the radar. The highest conductances observed, with Hall and Pedersen conductances reaching 120 and 48 S, respectively, are found to be associated with arcs appearing at the southern edge of activity in the vicinity of a westward-travelling surge.  相似文献   

11.
A study is made of the intensity distribution among the bands of the Meinel and first negative system of N2+ due to resonance scattering of sunlight. Absolute transition probabilities are used to calculate the relative populations among the ion states under resonance scattering conditions; the mean lifetime for deactivation is the parameter which determines the amount of resonance scattering. Photon scattering rates are calculated for most of the ion bands and it is suggested that an appropriate value for the 3914 Å band would be 0·050 photons/ sec per ion. Observations of the Δυ = −1 sequence of the first negative system in the twilight spectrum are reported. Extended vibrational development is detected which indicates that only about 80 per cent of the emission is resonance scattered. Sunlit auroral spectra of N2+, however, which have been generally considered to be due predominantly to resonance scattering, indicates only about 40 per cent of the emission is due to resonance scattering. Measurable effects resulting from a charge-transfer ion source (O+(2D)) are predicted.  相似文献   

12.
《Astroparticle Physics》2005,22(5-6):339-353
Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 1016 eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E−2, with an equal mix of all flavors, is limited to E2Φ(1015 eV < E < 3 × 1018 eV)  0.99 × 10−6 GeV cm−2 s−1 sr−1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bounds to specific extraterrestrial neutrino flux predictions are also presented.  相似文献   

13.
The nature of negative ions in the altitude region 42–45 km has been investigated by means of a balloon borne mass spectrometer. Apart from the NO3 and HSO4 clusters, ions with different cores, which can be identified as CO3, HCO3, Cl and ClO3 were observed. The spectra have been used to estimate the sulfuric acid number density at 45.2 and 42.3 km altitude.  相似文献   

14.
Venera 9, 10 measurements of the nightside ionospheric profile and the night airglow were used for investigating ionosphere formation processes. The upper ionospheric layer may be formed by HeI 584 Å radiation; the lower layer by meteorite ionization. Upper limits on the electron energy flux, <4 × 108eV cm−2 s−1, the helium ion flux <107 cm−2 s−1, the nitric oxide mixing ratio, <1.5 × 10−4 and the atomic sulphur mixing ratio, <10−6, are deduced for ionospheric altitudes.  相似文献   

15.
Auroral luminosities of the main emission lines in the aurora have been calculated for excitation by an isotopic primary electron flux with spectra of the form J(E) = AE exp (−E/E1) + B(E2)E exp (−E/E1). The variation of emissions from O and N2+ with height are shown, as are the variations of column integrated intensities and pertinent intensity ratios with the characteristic energy E2, this leading to a method of estimating the electron spectrum from ground observation.  相似文献   

16.
Observations of vertical and horizontal thermospheric winds, using the OI (3P-1D) 630 nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia and in Svalbard (Spitzbergen) have identified sources of strong vertical winds in the high latitude thermosphere. Observations from Svalbard (78.2N 15.6E) indicate a systematic diurnal pattern of strong downward winds in the period 06.00 U.T. to about 18.00 U.T., with strong upward winds between 20.00 U.T. and 05.00 U.T. Typical velocities of 30 m s?1 downward and 50 m s?1 upward occur, and there is day to day variability in the magnitude (30–80 m s?1) and phase (+/- 3 h) in the basically diurnal variation. Strong and persistent downward winds may also occur for periods of several hours in the afternoon and evening parts of the auroral oval, associated with the eastward auroral electrojet (northward electric fields and westward ion drifts and winds), during periods of strong geomagnetic disturbances. Average downward values of 30–50 m s?1 have been observed for periods of 4–6 h at times of large and long-lasting positive bay disturbances in this region. It would appear that the strong vertical winds of the polar cap and disturbed dusk auroral oval are not in the main associated with propagating wave-like features of the wind field. A further identified source is strongly time-dependent and generates very rapid upward vertical motions for periods of 15–30 min as a result of intense local heating in the magnetic midnight region of the auroral oval during the expansion phase of geomagnetic disturbances, and accompanying intense magnetic and auroral disturbances. In the last events, the height-integrated vertical wind (associated with a mean altitude of about 240 km) may exceed 100–150 m s?1. These disturbances also invariably cause major time-dependent changes of the horizontal wind field with, for example, horizontal wind changes exceeding 500 m s?1 within 30 min. The changes of vertical winds and the horizontal wind field are highly correlated, and respond directly to the local geomagnetic energy input. In contrast to the behaviour observed in the polar cap or in the disturbed afternoon auroral oval, the ‘expansion phase’ source, which corresponds to the classical ‘auroral substorm’, generates strong time-dependent wind features which may propagate globally. This source thus directly generates one class of thermospheric gravity waves. In this first paper we will consider the experimental evidence for vertical winds. In a second paper we will use a three-dimensional time-dependent model to identify the respective roles of geomagnetic energy and momentum in the creation of both classes of vertical wind sources, and consider their propagation and effects on global thermospheric dynamics.  相似文献   

17.
Ion velocity distributions in the auroral ionosphere   总被引:1,自引:0,他引:1  
For application to studies of the auroral ionosphere we have calculated the velocity distribution of the ions in a weakly-ionized plasma subjected to crossed electric and magnetic fields. We have retained enough terms in the series expansion of the distribution to enable us to determine under what conditions departures from the Maxwellian form become significant and what the nature of these departures is, but we cannot calculate precise values of the distribution function when the departures are large. Departures are negligibly small under conditions appropriate to the auroral ionosphere at low altitudes, where the ion-neutral collision frequency is much larger than the ion cyclotron frequency. At altitudes above about 120 km, however, the magnitude of the departures varies little with altitude. Electric fields greater than 25 mV m−1 cause departures from the Maxwellian distribution that are greater than 20 per cent at random velocities equal to or greater than twice the mean thermal speed of the ions. Under almost all conditions we find that the distribution is depleted in ions moving parallel to the magnetic field relative to those moving perpendicular, an effect that might be detectable in ionospheric measurements of ion temperature.  相似文献   

18.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

19.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

20.
On 14 July 1974 the Atmosphere Explorer-C satellite flew through an aurora at F-region altitudes just after local midnight. The effects of the particle influx are clearly evident in the ion densities, the 6300 Å airglow, and the electron and ion temperatures. This event provided an opportunity to study the agreement between the observed ion densities and those calculated from photochemical theory using in situ measurements of such atmospheric parameters as the neutral densities and the differential electron energy spectra obtained along the satellite track. Good agreement is obtained for the ions O2+, NO+ and N2+ using photochemical theory and measured rate constants and electron impact cross sections. Atomic nitrogen densities are calculated from the observed [NO+]/[O2+] ratio. In the region of most intense electron fluxes (20 erg cm−2 sec−1) at 280 km, the N density is found to be between 2 and 7 × 107 cm−3. The resulting N densities are found to account for approx. 60% of the production of N+ through electron impact on N and the resonant charge exchange of O+(2P) with N(4S). This reaction also provides a significant source of O(1S) in the aurora at F-region altitudes. In the region of intense fast electron influx, the reaction with atomic nitrogen is found to be the main loss of O+(2P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号