首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical novae are important producers of radioactive nuclei, such as 7Be, 13N, 18F, 22Na and 26Al. The disintegration of these nuclei produces positrons (except for 7Be) that through annihilation with electrons produce photons of energies 511 keV and below. Furthermore, 7Be and 22Na decay producing photons with energies of 478 and 1275 keV, respectively, well in the γ-ray domain. Therefore, novae are potential sources of γ-ray emission. We have developed two codes in order to analyse carefully the γ-ray emission of individual classical novae: a hydrodynamical one, which follows both the accretion and the explosion stages, and a Monte Carlo one, able to treat both production and transfer of γ-ray photons. Both codes have been coupled in order to simulate realistic explosions. The properties of γ-ray spectra and γ-ray light curves (for the continuum and for the lines at 511, 478 and 1275 keV) have been analysed, with a special emphasis on the difference between carbon–oxygen and oxygen–neon novae. Predictions of detectability of individual novae by the future SPI spectrometer on board the INTEGRAL satellite are made. Concerning 26Al, its decay produces photons of 1809 keV but this occurs on a time-scale much longer than the typical time interval between nova outbursts in the Galaxy, making it undetectable in individual novae. The accumulated emission of 26Al from many Galactic novae has not been modelled in this paper.  相似文献   

2.
We present an X-ray spectroscopic study of the bright Compton-thick Seyfert 2 galaxies NGC 1068 and the Circinus Galaxy, performed with BeppoSAX . Matt et al. interpreted the spectrum above 4 keV as the superposition of Compton reflection and warm plasma scattering of the nuclear radiation. When this continuum is extrapolated downwards to 0.1 keV, further components arise. The NGC 1068 spectrum is rich in emission lines, mainly owing to K α transitions of He-like elements from oxygen to iron, plus a K α fluorescent line from neutral iron. If the ionized lines originate in the warm scatterer, its thermal and ionization structure must be complex. From the continuum and line properties, we estimate a column density, N warm, of the warm scatterer less than a few×1021 cm−2. In the Circinus Galaxy, the absence of highly ionized iron is consistent with a scattering medium with U X≲5 and N warm∼ a few×1022 cm−2. In both cases the neutral iron line is most naturally explained as fluorescence in the medium responsible for the Compton reflection continuum. In NGC 1068 an optically thin plasma emission with kT ≃500 eV and strongly sub-solar metallicity is required, while such a component is only marginal in the Circinus Galaxy. We tentatively identify this component as emission of diffuse hot gas in the nuclear starbursts. Possible causes for the metal depletion are discussed.  相似文献   

3.
MERLIN observations of the unusually slow nova V723 Cas are presented. Nine epochs of 6-cm data between 1996 and 2001 are mapped, showing the initial expansion and brightening of the radio remnant, the development of structure and the final decline. A radio light curve is presented and fitted by the standard Hubble flow model for radio emission from novae in order to determine the values of various physical parameters for the shell. The model is consistent with the overall development of the radio emission. Assuming a distance of 2.39 (±0.38) kpc and a shell temperature of 17 000 K, the model yields values for expansion velocity of  414 ± 0.1 km s-1  and shell mass of  1.13 ± 0.04 × 10−4 M  . These values are consistent with those derived from other observations although the ejected masses are rather higher than theoretical predictions. The structure of the shell is resolved by MERLIN and shows that the assumption of spherical symmetry in the standard model is unlikely to be correct.  相似文献   

4.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

5.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

6.
We explore some basic observational consequences of assuming that the dark matter in the Milky Way consists mainly of molecular clouds, and that cosmic rays can penetrate these clouds. In a favoured model of the clouds, this penetration would have the following consequences, all of which agree with observation.
(i) Cosmic ray nuclei would be fragmented when they enter a cloud, giving them a lifetime in the Galaxy of ∼1015 s (for relativistic nuclei).
(ii) Pionic γ -rays emitted by the clouds, after proton–proton (pp) collisions, would have a diffuse flux in the Galactic plane comparable to the flux from known sources for photon energies ≳1 GeV .
(iii) The heat input into the clouds from cosmic rays would be re-radiated mainly in the far-infrared. The resulting radiation background agrees, in both intensity and spectrum in different directions, with a known excess in the far‐infrared background of the galaxy over emission by warm dust.  相似文献   

7.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

8.
Using the high-resolution spectrometer SPI on board the International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ), we search for a spectral line produced by a dark matter (DM) particle with a mass in the range  40 keV < M DM < 14 MeV  , decaying in the DM halo of the Milky Way. To distinguish the DM decay line from numerous instrumental lines found in the SPI background spectrum, we study the dependence of the intensity of the line signal on the offset of the SPI pointing from the direction toward the Galactic Centre. After a critical analysis of the uncertainties of the DM density profile in the inner Galaxy, we find that the intensity of the DM decay line should decrease by at least a factor of 3 when the offset from the Galactic Centre increases from 0° to 180°. We find that such a pronounced variation of the line flux across the sky is not observed for any line, detected with a significance higher than 3σ in the SPI background spectrum. Possible DM decay origin is not ruled out only for the unidentified spectral lines, having low (∼3σ) significance or coinciding in position with the instrumental ones. In the energy interval from 20 keV to 7 MeV, we derive restrictions on the DM decay line flux, implied by the (non-)detection of the DM decay line. For a particular DM candidate, the sterile neutrino of mass M DM, we derive a bound on the mixing angle.  相似文献   

9.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

10.
In the neutron-rich internal shocks model for γ-ray bursts (GRBs), the Lorentz factors (LFs) of ion shells are variable, and so are the LFs of accompanying neutron shells. For slow neutron shells with a typical LF of approximate tens, the typical β-decay radius is  ∼1014–1015 cm  . As GRBs last long enough  [ T 90 > 14(1 + z ) s]  , one earlier but slower ejected neutron shell will be swept successively by later ejected ion shells in the range  ∼1013–1015 cm  , where slow neutrons have decayed significantly. Part of the thermal energy released in the interaction will be given to the electrons. These accelerated electrons will mainly be cooled by the prompt soft γ-rays and give rise to GeV emission. This kind of GeV emission is particularly important for some very long GRBs and is detectable for the upcoming satellite Gamma-Ray Large Area Space Telescope (GLAST).  相似文献   

11.
We have used the Very Large Array (VLA) to search for the H92α radio recombination line (RRL) in four starburst galaxies. In NGC 660, the line was detected over a 17Å‐8 arcsec2 region near its starburst nucleus. The line and continuum emission indicate that the RRL-emitting gas is most likely in the form of a cluster of H ii regions with a small filling factor. Using a simple model we find that the total ionized mass in the nuclear region is in the range 2–8Å‐104 M⊙ and the rate of production of UV photons N Lyc∼1–3Å‐1053 s−1. The ratio of H92α and Brγ line intensities in NGC 660 indicates that extinction is significant even at λ=2 μm. The velocity field of the ionized gas is consistent with a rotating disc with an average velocity gradient of ∼15 km s−1 arcsec−1. The dynamical mass within the central 500 pc is ∼4Å‐108 M⊙ and may be about ∼6Å‐107 M⊙ within the central 120 pc. No line was detected in the other galaxies (NGC 520, NGC 1614 and NGC 6946) to a 3σ limit of 300 μJy. In the starburst galaxies in which RRLs have been detected, we find that there is a rough correlation between the integrated H92α line flux density and both the total far-infrared flux density and the radio continuum emission from the central region.  相似文献   

12.
We have used echelle spectra of resolving power 35 000 to derive chemical abundances and the 12C/13C ratio in the 1.9-d carbon Cepheid RT TrA and the Cepheid U TrA, employed as a comparison star. We confirm that RT TrA is very metal-rich with [Fe/H]=+0.4. In addition, C and N are substantially in excess, and a small deficiency in O is present. We interpret these anomalies as resulting from the appearance on the stellar surface of material enriched in 12C by the 3- α process, followed by CNO cycling to convert 12C to 13C and 14N. In addition, some 16O has been processed to 14N. The partial processing of 16O to 14N indicates that substantial 17O may be present. Proton capture seems to have enhanced 23Na from the Ne isotopes.  相似文献   

13.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

14.
During the past decade or so, measurements of Galactic H  i absorption using VLBI against extragalactic sources, as well as multi-epoch observations in pulsar directions, have detected small-scale transverse variations corresponding to tens of au at the distance of the absorbing matter. Hitherto these measurements have been interpreted as small-scale structure in the H  i distribution with densities n H  i ∼104–105 cm−3, orders of magnitude greater than those of the pc-scale structure. Naturally, it is difficult to imagine how such structures could exist in equilibrium with other components of the ISM.
In this paper we show that structure on all scales contributes to the differences on neighbouring lines of sight, and that the observed differences can be accounted for by a natural extension of the distribution of irregularities in the distribution of H  i opacities at larger scales, using a single power law. This, in our opinion, should put an end to the decades-long puzzle of the so-called small-scale structure in H  i and other species in the Galaxy.  相似文献   

15.
Calculations are made of the resonance contribution to electron-impact excitation of H-like 13C and Li-like 23Na, 25Mg, 27Al and 29Si to the upper hyperfine levels that produce millimetre (mm) lines of likely astrophysical interest. The resonance contribution is found to be very important for these Li-like ions, considerably more important than for Li-like 57Fe considered previously. However, resonances are found to be rather unimportant for H-like 13C. The effect of radiative decay on the resonance contribution is found to be insignificant in all of the present calculations.  相似文献   

16.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

17.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

18.
Magnetars, neutron stars with ultrastrong magnetic fields  ( B ∼ 1014−1015G)  , manifest their exotic nature in the form of soft gamma-ray repeaters and anomalous X-ray pulsars. This study estimates the birthrate of magnetars to be ∼0.22 per century with a Galactic population comprising ∼17 objects. A population synthesis was carried out based on the five anomalous X-ray pulsars detected in the ROSAT All Sky Survey by comparing their number to that of massive OB stars in a well-defined volume. Additionally, the group of seven X-ray dim isolated neutron stars detected in the same survey were found to have a birthrate of ∼2 per century with a Galactic population of ∼22 000 objects.  相似文献   

19.
The moderately fast Nova Oph 2007 reached maximum brightness on 2007 March 28 at   V = 8.52, B − V =+1.12, V − R C=+0.76, V − I C=+1.59  and   R C− I C=+0.83  , after fast initial rise and a pre-maximum halt lasting a week. Decline times were   t V 2= 26.5, t B 2= 30, t V 3= 48.5  and   t B 3= 56.5  d. The distance to the nova is   d = 3.7 ± 0.2 kpc  , the height above the Galactic plane is   z = 215 pc  , the reddening is   E ( B − V ) = 0.90  and the absolute magnitude at maximum is   M max V =−7.2  and   M max B =−7.0  . The spectrum four days before maximum resembled a F6 supergiant, in an agreement with broad-band colours. It later developed into that of a standard 'Fe  ii '-class nova. Nine days past maximum, the expansion velocity estimated from the width of Hα emission component was  ∼730 km s−1  , and the displacement from it of the principal and diffuse-enhanced absorption systems was ∼650 and  1380 km s−1  , respectively. Dust probably formed and disappeared during the period from 82 to 100 d past maximum, causing (at peak dust concentration) an extinction of  Δ B = 1.8  mag and an extra  Δ E ( B − V ) = 0.44  reddening.  相似文献   

20.
The first supersoft source (SSS) identification with an optical nova in M 31 was based on ROSAT observations. Twenty additional X‐ray counterparts (mostly identified as SSS by their hardness ratios) were detected using archival ROSAT, XMM‐Newton and Chandra observations obtained before July 2002. Based on these results optical novae seem to constitute the major class of SSS in M 31. An analysis of archival Chandra HRC‐I and ACIS‐I observations obtained from July 2004 to February 2005 demonstrated that M 31 nova SSS states lasted from months to about 10 years. Several novae showed short X‐ray outbursts starting within 50 d after the optical outburst and lasting only two to three months. The fraction of novae detected in soft X‐rays within a year after the optical outburst was more than 30%. Ongoing optical nova monitoring programs, optical spectral follow‐up and an up‐to‐date nova catalogue are essential for the X‐ray work. Re‐analysis of archival nova data to improve positions and find additional nova candidates are urgently needed for secure recurrent nova identifications. Dedicated XMM‐Newton/Chandra monitoring programs for X‐ray emission from optical novae covering the centre area of M 31 continue to provide interesting new results (e.g. coherent 1105 s pulsations in the SSS counterpart of nova M31N 2007‐12b). The SSS light curves of novae allow us – together with optical information – to estimate the mass of the white dwarf, of the ejecta and the burned mass in the outburst. Observations of the central area of M 31 allow us – in contrast to observations in the Galaxy – to monitor many novae simultaneously and proved to be prone to find many interesting SSS and nova types (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号