首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the unsteady column accretion of material at a rate \(10^{15} g s^{ - 1} \leqslant \dot M \leqslant 10^{16} g s^{ - 1}\) onto the surface of a magnetized neutron star using a modified first-order Godunov method with splitting. We study the dynamics of the formation and evolution of a shock in an accretion column near the surface of a star with a magnetic field 5×1011B≤1013 G. An effective transformation of the accretion flow energy into cyclotron radiation is shown to be possible for unsteady accretion with a collisionless shock whose front executes damped oscillations. The collisionless deceleration of the accreting material admits the conservation of a fraction of the heavy nuclei that have not been destroyed in spallation reactions. The fraction of the CNO nuclei that reach the stellar atmosphere is shown to depend on the magnetic field strength of the star.  相似文献   

2.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

3.
I present a scenario by which an accretion flow with alternating angular momentum on to a newly born neutron star in a core collapse supernova(CCSN) efficiently amplifies magnetic fields and by that launches jets. The accretion flow of a collapsing core on to the newly born neutron star suffers spiral standing accretion shock instability(SASI). This instability leads to a stochastically variable angular momentum of the accreted gas, which in turn forms an accretion flow with alternating directions of the angular momentum, and hence alternating shear, at any given time. I study the shear in this alternating-shear sub-Keplerian inflow in published simulations, and present a new comparison with Keplerian accretion disks. From that comparison I argue that it might be as efficient as Keplerian accretion disks in amplifying magnetic fields by a dynamo. I suggest that although the average specific angular momentum of the accretion flow is small,namely, sub-Keplerian, this alternating-shear accretion flow can launch jets with varying directions, namely,jittering jets. Neutrino heating is an important ingredient in further energizing the jets. The jittering jets locally revive the stalled accretion shock in the momentarily polar directions, and by that they explode the star. I repeat again my call for a paradigm shift from a neutrino-driven explosion of CCSNe to a jet-driven explosion mechanism that is aided by neutrino heating.  相似文献   

4.
We examine the behaviour of accretion flow around a rotating black hole in presence of cooling. We obtain global flow solutions for various accretion parameters that govern the accreting flow. We show that standing isothermal shock wave may develop in such an advective accretion flow in presence of cooling. This shocked solution has observational consequences as it successfully provides the possible explanations of energy spectra as well as generation of outflows/jets of various galactic and extra-galactic black hole candidates. We study the properties of isothermal shock wave and find that it strongly depends on the cooling efficiency. We identify the region in the parameter space spanned by the specific energy and specific angular momentum of the flow for standing isothermal shock as a function of cooling efficiencies and find that parameter space gradually shrinks with the increase of cooling rates. Our results imply that accretion flow ceases to contain isothermal shocks when cooling is beyond its critical value.  相似文献   

5.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   

6.
We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.  相似文献   

7.
We investigate the behaviour of dissipative accreting matter close to a black hole, as this provides important observational features of galactic and extragalactic black hole candidates. We find a complete set of global solutions in the presence of viscosity and synchrotron cooling. We show that advective accretion flow can have a standing shock wave and the dynamics of the shock is controlled by the dissipation parameters (both viscosity and cooling). We study the effective region of the parameter space for standing as well as oscillating shock. We find that the shock front always moves towards the black hole as the dissipation parameters are increased. However, viscosity and cooling have opposite effects in deciding the solution topologies. We obtain two critical cooling parameters that separate the nature of the accretion solution.  相似文献   

8.
中子星X射线双星中kHz QPO现象的理论解释   总被引:1,自引:0,他引:1  
罗西X射线时变探测器(RXTE)在中子星小质量X射线双星中发现了千赫兹准周期振荡现象(kHzQPO)。kHzQPO的频率一般在几百到上千赫兹,其动力学时标与吸积盘最内部区域物质的运动时标一致,因此普遍认为kHz QPO产生于中子星表面附近区域,携带了来自中心中子星及周围强引力场信息,如质量、自转周期、角动量、半径、磁场等。kHz QpO现象的理解为研究强引力场和致密物质状态开启了一扇新的窗口。着重介绍基于kHz QPO的基本现象和相应的理论模型。  相似文献   

9.
本文在中子星吸积彗星云模型的基础上,认为软重爆GB790107起源于弱磁化(B~10~8G)中子星,其阵雨式地吸积彗星云将在中子星表面形成一光厚辐射区,该辐射区的温度分布由激波模型确定.这一辐射区中的高温等离子体产生的黑体辐射将很好地拟合GB790107的观测能谱,且获得爆源距离为(1.35~13.5)pc.  相似文献   

10.
Hydrodynamically stationary, spherically symmetric accretion onto a neutron star is examined taking the reverse effect of radiation into account. It is assumed that the plasma flow is adiabatic and that radiation is generated in a thin surface layer of the neutron star, where incoming particles are slowed down. It is shown that for stationary accretion, neither a stop, nor a substantial slowing down of the accretion flux is possible for any physically allowed conditions far from the neutron star.  相似文献   

11.
We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.  相似文献   

12.
We have investigated the ionization structure of the post-shock regions of magnetic cataclysmic variables, using an analytic density and temperature structure model in which effects caused by bremsstrahlung and cyclotron cooling are considered. We find that in the majority of the shock-heated region where H- and He-like lines of the heavy elements are emitted, the collisional-ionization and corona-condition approximations are justified. We have calculated the line emissivity and ionization profiles for iron as a function of height within the post-shock flow. For low-mass white dwarfs, line emission takes place near the shock. For high-mass white dwarfs, most of the line emission takes place in regions well below the shock and hence it is less sensitive to the shock temperature. Thus, the line ratios are useful to determine the white dwarf masses for the low-mass white dwarfs, but the method is less reliable when the white dwarfs are massive. Line spectra can, however, be used to map the hydrodynamic structure of the post-shock accretion flow.  相似文献   

13.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

14.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

15.
在中子星磁轴吸积柱的上部,少数高能电子通过磁镜点反射,可使部份电子的速度分布形成非热分布,由此激发激射(Maser)不稳定性。波被放大,发射出频率近似为电子迴旋频率及其倍频的相干辐射。用此模型计算了HerX-1的迴旋线发射。发现不稳定性增长率与吸积柱中电子数密度成正比,因而比非相干散射产生的连续辐射随电子数密度增长更快;而且发射线的强度和能量均与脉冲相位关联。这个理论可解释近期的HerX-1观测结果。  相似文献   

16.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

17.
The spherically symmetric accretion of matter onto a neutron star with a weak magnetic field is shown to be accompanied by the generation of gamma rays due to the Comptonization of X=rays from the neutron star on the flow of incident plasma.  相似文献   

18.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

19.
We systematically analyse all the available X-ray spectra of disc accreting neutron stars (atolls and millisecond pulsars) from the RXTE data base. We show that while all these have similar spectral evolution as a function of mass accretion rate, there are also subtle differences. There are two different types of hard/soft transition, those where the spectrum softens at all energies, leading to a diagonal track on a colour–colour diagram, and those where only the higher energy spectrum softens, giving a vertical track. The luminosity at which the transition occurs is correlated with this spectral behaviour, with the vertical transition at   L / L Edd∼ 0.02  while the diagonal one is at ∼0.1. Superimposed on this is the well-known hysteresis effect, but we show that classic, large-scale hysteresis occurs only in the outbursting sources, indicating that its origin is in the dramatic rate of change of mass accretion rate during the disc instability. We show that the long-term mass accretion rate correlates with the transition behaviour, and speculate that this is due to the magnetic field being able to emerge from the neutron star surface for low average mass accretion rates. While this is not strong enough to collimate the flow except in the millisecond pulsars, its presence may affect the inner accretion flow by changing the properties of the jet.  相似文献   

20.
A possible mechanism for screening of the surface magnetic field of an accreting neutron star, by the accreted material, is investigated. We model the material flow in the surface layers of the star by an assumed two-dimensional velocity field satisfying all the physical requirements. Using this model velocity we find that, in the absence of magnetic buoyancy, the surface field is screened (i.e. there is submergence of the field by advection) within the time-scale of material flow of the top layers. On the other hand, if magnetic buoyancy is present, the screening happens over a time-scale that is characteristic of the slower flow of the deeper (and hence, denser) layers. For accreting neutron stars, this longer time-scale turns out to be about 105 yr, which is of a similar order of magnitude to the accretion time-scale of most massive X-ray binaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号