首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The aim of this paper is to investigate the association of geomagnetic storms with the component of the interplanetary magnetic field (IMF) perpendicular to the ecliptic (\(Bz\)), the solar wind speed (\(V\)), the product of solar wind speed and \(Bz\) (VBz), the Kp index, and the sunspot number (SSN) for two consecutive even solar cycles, Solar Cycles 22 (1986?–?1995) and 24 (2009?–?2017). A comparative study has been done using the superposed epoch method (Chree analysis). The results of the present analysis show that \(Bz\) is a geoeffective parameter. The correlation coefficient between Dst and \(Bz\) is found to be 0.8 for both Solar Cycles 22 and 24, which indicates that these two parameters are highly correlated. Statistical relationships between Dst and Kp are established and it is shown that for the two consecutive even solar cycles, Solar Cycles 22 and 24, the patterns are strikingly similar. The correlation coefficient between Dst and Kp is found to be the same for the two solar cycles (?0.8), which clearly indicates that these parameters are well anti-correlated. For the same studied period we found that the SSN does not show any relationship with Dst and Kp, while there exists an inverse relation between Dst and the solar wind speed, with some time lag. We have also found that VBz is a more relevant parameter for the production of geomagnetic storms, as compared to \(V\) and \(Bz\) separately. In addition, we have found that in Solar Cycles 22 and 24 this combined parameter is more relevant during the descending phase as compared to the ascending phase.  相似文献   

2.
In this work a total of 266 interplanetary coronal mass ejections observed by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SOHO/LASCO) and then studied by in situ observations from Advanced Composition Explorer (ACE) spacecraft, are presented in a new catalog for the time interval 1996?–?2009 covering Solar Cycle 23. Specifically, we determine the characteristics of the CME which is responsible for the upcoming ICME and the associated solar flare, the initial/background solar wind plasma and magnetic field conditions before the arrival of the CME, the conditions in the sheath of the ICME, the main part of the ICME, the geomagnetic conditions of the ICME’s impact at Earth and finally we remark on the visual examination for each event. Interesting results revealed from this study include the high correlation coefficient values of the magnetic field \(B_{z}\) component against the Ap index (\(r = 0.84\)), as well as against the Dst index (\(r = 0.80\)) and of the effective acceleration against the CME linear speed (\(r = 0.98\)). We also identify a north–south asymmetry for X-class solar flares and an east–west asymmetry for CMEs associated with strong solar flares (magnitude ≥ M1.0) which finally triggered intense geomagnetic storms (with \(\mathrm{Ap} \geq179\)). The majority of the geomagnetic storms are determined to be due to the ICME main part and not to the extreme conditions which dominate inside the sheath. For the intense geomagnetic storms the maximum value of the Ap index is observed almost 4 hours before the minimum Dst index. The amount of information makes this new catalog the most comprehensive ICME catalog for Solar Cycle 23.  相似文献   

3.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

4.
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.  相似文献   

5.
Data of geomagnetic indices (aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967–2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (\(\mathbf{T}\)) and Away (\(\mathbf{A}\)) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of \(\mathbf{A}\) polarity predominated over the \(\mathbf{T}\) polarity days by 4.3% during the positive magnetic polarity epoch (1991–1999). While the days of \(\mathbf{T}\) polarity exceeded the days of \(\mathbf{A}\) polarity by 5.8% during the negative magnetic polarity epoch (2001–2012). (ii) Considerable yearly North–South (N–S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for \(aa\) and \(Ap\) indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for \(aa\) and \(Ap\) indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N–S asymmetry of \(Kp\) index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices (aa, Ap, and \(Kp\)) all have northern dominance during positive magnetic polarity epoch (1971–1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001–2012).  相似文献   

6.
We present an analysis of the geoeffectiveness of corotating interaction regions (CIRs), employing the data recorded from 25 January to 5 May 2005 and throughout 2008. These two intervals in the declining phase of Solar Cycle 23 are characterised by a particularly low number of interplanetary coronal mass ejections (ICMEs). We study in detail how four geomagnetic-activity parameters (the Dst, Ap, and AE indices, as well as the Dst time derivative, \(\mathrm{dDst}/\mathrm{d}t\)) are related to three CIR-related solar wind parameters (flow speed, \(V\), magnetic field, \(B\), and the convective electric field based on the southward Geocentric solar magnetospheric (GSM) magnetic field component, \(\mathit{VB}_{s}\)) on a three-hour time resolution. In addition, we quantify statistical relationships between the mentioned geomagnetic indices. It is found that Dst is correlated best to \(V\), with a correlation coefficient of \(\mathrm{cc}\approx0.6\), whereas there is no correlation between \(\mathrm{dDst}/\mathrm{d}t\) and \(V\). The Ap and AE indices attain peaks about half a day before the maximum of \(V\), with correlation coefficients ranging from \(\mathrm{cc}\approx0.6\) to \(\mathrm{cc}\approx0.7\), depending on the sample used. The best correlations of Ap and AE are found with \(\mathit{VB}_{s}\) with a delay of 3 h, being characterised by \(\mathrm{cc}\gtrsim 0.6\). The Dst derivative \(\mathrm{dDst}/\mathrm{d}t\) is also correlated with \(\mathit{VB}_{s}\), but the correlation is significantly weaker \(\mathrm{cc}\approx 0.4\)?–?0.5, with a delay of 0?–?3 h, depending on the employed sample. Such low values of correlation coefficients indicate that there are other significant effects that influence the relationship between the considered parameters. The correlation of all studied geomagnetic parameters with \(B\) are characterised by considerably lower correlation coefficients, ranging from \(\mathrm{cc}=0.3\) in the case of \(\mathrm{dDst}/\mathrm{d}t\) up to \(\mathrm{cc}=0.56\) in the case of Ap. It is also shown that peak values of geomagnetic indices depend on the duration of the CIR-related structures. The Dst is closely correlated with Ap and AE (\(\mathrm{cc}=0.7\)), Dst being delayed for about 3 h. On the other hand, \(\mathrm{dDst}/\mathrm{d}t\) peaks simultaneously with Ap and AE, with correlation coefficients of 0.48 and 0.56, respectively. The highest correlation (\(\mathrm{cc}=0.81\)) is found for the relationship between Ap and AE.  相似文献   

7.
The physical parameters of the solar wind observed in-situ near 1 AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature, \(T\), and velocity, \(V\), and the negative correlation between density, \(N\), and velocity, \(V\), are well known. However, the magnetic field intensity, \(B\), does not appear to be well correlated with any individual plasma parameter. In this article, we discuss previously under-reported correlations between \(B\) and the combined plasma parameters \(\sqrt{N V^{2}} \) as well as between \(B\) and \(\sqrt{NT}\). These two correlations are strong during periods of corotating interaction regions and high-speed streams, and moderate during intervals of slow solar wind. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure.  相似文献   

8.
The most used method to calculate the coronal electron temperature [\(T_{\mathrm{e}} (r)\)] from a coronal density distribution [\(n_{\mathrm{e}} (r)\)] is the scale-height method (SHM). We introduce a novel method that is a generalization of a method introduced by Alfvén (Ark. Mat. Astron. Fys. 27, 1, 1941) to calculate \(T_{\mathrm{e}}(r)\) for a corona in hydrostatic equilibrium: the “HST” method. All of the methods discussed here require given electron-density distributions [\(n_{\mathrm{e}} (r)\)] which can be derived from white-light (WL) eclipse observations. The new “DYN” method determines the unique solution of \(T_{\mathrm{e}}(r)\) for which \(T_{\mathrm{e}}(r \rightarrow \infty) \rightarrow 0\) when the solar corona expands radially as realized in hydrodynamical solar-wind models. The applications of the SHM method and DYN method give comparable distributions for \(T_{\mathrm{e}}(r)\). Both have a maximum [\(T_{\max}\)] whose value ranges between 1?–?3 MK. However, the peak of temperature is located at a different altitude in both cases. Close to the Sun where the expansion velocity is subsonic (\(r < 1.3\,\mathrm{R}_{\odot}\)) the DYN method gives the same results as the HST method. The effects of the other free parameters on the DYN temperature distribution are presented in the last part of this study. Our DYN method is a new tool to evaluate the range of altitudes where the heating rate is maximum in the solar corona when the electron-density distribution is obtained from WL coronal observations.  相似文献   

9.
We examine the average magnetic field magnitude (\(| \boldsymbol{B} | \equiv B\)) within magnetic clouds (MCs) observed by the Wind spacecraft from 1995 to July 2015 to understand the difference between this \(B\) and the ideal \(B\)-profiles expected from using the static, constant-\(\alpha\), force-free, cylindrically symmetric model for MCs of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 11957, 1990, denoted here as the LJB model). We classify all MCs according to an assigned quality, \(Q_{0}\) (\(= 1, 2, 3\), for excellent, good, and poor). There are a total of 209 MCs and 124 when only \(Q_{0} = 1\), 2 cases are considered. The average normalized field with respect to the closest approach (\(\mathit{CA}\)) is stressed, where we separate cases into four \(\mathit{CA}\) sets centered at 12.5 %, 37.5 %, 62.5 %, and 87.5 % of the average radius; the averaging is done on a percentage-duration basis to treat all cases the same. Normalized \(B\) means that before averaging, the \(B\) for each MC at each point is divided by the LJB model-estimated \(B\) for the MC axis, \(B_{0}\). The actual averages for the 209 and 124 MC sets are compared to the LJB model, after an adjustment for MC expansion (e.g. Lepping et al. in Ann. Geophys. 26, 1919, 2008). This provides four separate difference-relationships, each fitted with a quadratic (Quad) curve of very small \(\sigma\). Interpreting these Quad formulae should provide a comprehensive view of the variation in normalized \(B\) throughout the average MC, where we expect external front and rear compression to be part of its explanation. These formulae are also being considered for modifying the LJB model. This modification will be used in a scheme for forecasting the timing and magnitude of magnetic storms caused by MCs. Extensive testing of the Quad formulae shows that the formulae are quite useful in correcting individual MC \(B\)-profiles, especially for the first \({\approx\,}1/3\) of these MCs. However, the use of this type of \(B\) correction constitutes a (slight) violation of the force-free assumption used in the original LJB MC model.  相似文献   

10.
We find that element abundances in energetic ions accelerated by shock waves formed at corotating interaction regions (CIRs) mirror the abundances of the solar wind modified by a decreasing power-law dependence on the mass-to-charge ratio \(A\)/\(Q\) of the ions. This behavior is similar in character to the well-known power-law dependence on \(A\)/\(Q\) of abundances in large gradual solar energetic particles (SEP). The CIR ions reflect the pattern of \(A\)/\(Q\), with \(Q\) values of the source plasma temperature or freezing-in temperature of 1.0?–?1.2 MK typical of the fast solar wind in this case. Thus the relative ion abundances in CIRs are of the form \((A\mbox{/}Q)^{a}\), where \(a\) is nearly always negative and evidently decreases with distance from the shocks, which usually begin beyond 1 AU. For one unusual historic CIR event where \(a \approx 0\), the reverse shock wave of the CIR seems to occur at 1 AU, and these abundances of the energetic ions become a direct proxy for the abundances of the fast solar wind.  相似文献   

11.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   

12.
Small-scale solar magnetic fields demonstrate features of fractal intermittent behavior, which requires quantification. For this purpose we investigate how the observational estimate of the solar magnetic flux density \(B\) depends on resolution \(D\) in order to obtain the scaling \(\ln B_{D} = - k \ln D +a\) in a reasonably wide range. The quantity \(k\) demonstrates cyclic variations typical of a solar activity cycle. In addition, \(k\) depends on the magnetic flux density, i.e. the ratio of the magnetic flux to the area over which the flux is calculated, at a given instant. The quantity \(a\) demonstrates some cyclic variation, but it is much weaker than in the case of \(k\). The scaling obtained generalizes previous scalings found for the particular cycle phases. The scaling is typical of fractal structures. In our opinion, the results obtained trace small-scale action in the solar convective zone and its coexistence with the conventional large-scale solar dynamo based on differential rotation and mirror-asymmetric convection.  相似文献   

13.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

14.
We estimate the electron density, \(n_{\mathrm{e}}\), and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na?i?5890 Å (D2) and Sr?ii?4078 Å. For a bright prominence (\(\tau_{\alpha}\approx25\)) we obtain a mean \(n_{\mathrm{e}}\approx2\times10^{10}~\mbox{cm}^{-3}\); for a faint one (\(\tau _{\alpha }\approx4\)) \(n_{\mathrm{e}}\approx4\times10^{10}~\mbox{cm}^{-3}\) on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\), required to deduce \(n_{\mathrm{e}}\) from the emission ratio Na?i/Sr?ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, \(\Delta\lambda_{\mathrm{D}}/\lambda_{0}\), of Sr?ii?4078 Å show an excess over those from Na?D2 and \(\mbox{H}\delta\,4101\) Å, assuming the same \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\). We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr?ii?4078 Å as compared to those from Na?D2.  相似文献   

15.
We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4?–?7 August 2011, which caused a geomagnetic storm with \(\mathit{Dst}=-110~\mbox{nT}\). The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2?–?4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about \(200~\mbox{km}\,\mbox{s}^{-1}\) to the height of \(0.25~\mbox{R}_{\odot}\). The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.  相似文献   

16.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   

17.
Seven-year-long seeing-free observations of solar magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to study the sources of the solar mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the solar disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (\(B^{\mathrm{W}}\)), intermediate (\(B^{\mathrm{I}}\)), and strong (\(B^{\mathrm{S}}\)) fields. The \(B^{\mathrm{W}}\) component represents areas with magnetic flux densities below the chosen threshold; the \(B^{\mathrm{I}}\) component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The \(B^{\mathrm{S}}\) component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that i) when the threshold level of 30 Mx?cm?2 is applied, the \(B^{\mathrm{I}}\) and \(B^{\mathrm{S}}\) components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2?–?6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx?cm?2, the contribution from \(B^{\mathrm{I}}+B^{\mathrm{S}}\) grows to 98%, and the fraction of the occupied area reaches a value of about 40% of the solar disk. In summary, we found that regardless of the threshold level, only a small part of the solar disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the solar surface are the source of the SMMF may need to be reconsidered.  相似文献   

18.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

19.
We present the results of the study of a red nova from the observations carried out with the Russian 6-m telescope (BTA) along with other telescopes of SAO RAS and SAI MSU. To investigate the nova progenitor,we used the data from the Digital Sky Survey and amateur photos available on the Internet. In the period between April 1993 and July 2014, the brightness of the progenitor gradually increased by \(2_ \cdot ^m 2\) in the V-band. At the peak of the first outburst in mid-November 2014, the star reached an absolute visual magnitude of \(- 12_ \cdot ^m 75\) but was discovered later, in February 2015, in a repeated outburst at the magnitude of \(- 11_ \cdot ^m 65\). The amplitude of the outburst was minimum among the red novae, only \(5_ \cdot ^m 6\) in V-band. The Hα emission line and the background of a cool supergiant continuum with gradually decreasing surface temperature were observed in the spectra. Such process is typical for red novae, although the object under study showed extreme parameters: maximum luminosity, maximum outburst duration, minimum outburst amplitude, unusual shape of the light curve. This event is interpreted as a massive OB star system components’merging accompanied by formation of a common envelope and then the expansion of this envelope with minimal energy losses.  相似文献   

20.
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as \(t\rightarrow +\infty \) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity \(e_{\infty }\) with \(0\le e_{\infty } \le 1\). The orbits satisfying \(e_{\infty } <1\) approach the singularity by an elliptic spiral and the corresponding solutions \(x(t)=r(t)e^{i\theta (t)}\) have a norm r(t) that goes to zero like a negative exponential and an argument \(\theta (t)\) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say \(T_{n+1} -T_n\), goes to zero as \(\frac{1}{n}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号